- **1.** Let \mathbf{Q}_0 be the set of rational numbers in [0,1] and suppose $\{I_n\}_{n=1}^N$ is a *finite* collection of open intervals covering \mathbf{Q}_0 . Prove that $\sum_{n=1}^N \ell(I_n) > 1$. (That is, the definition of outer measure critically depends on using a countably infinite cover.)
- **2.** Suppose A and B are subsets of \mathbb{R} . Prove that if $m^*(A) = 0$, then $m^*(A \cup B) = m^*(B)$.
- **3.** A set E is called a G_{δ} set if it is the intersection of a countable number of open sets. Note that all G_{δ} sets are in the Borel σ -algebra.

Prove that every compact set in \mathbb{R} is a G_{δ} set. (It is also true that every closed set in \mathbb{R} is a G_{δ} set, so you may choose to do that if you find it more convenient.)

4. Show that if A is a subset of \mathbb{R} , there is a G_{δ} set E so that $A \subset E$ and $m^*(A) = m^*(E)$.

5.

- (a) Prove directly from the definition of outer measure that $m^*(\mathbf{C}) = 0$, where \mathbf{C} is the Cantor set. (That is, do not use the fact that the Cantor set is measurable.)
- (b) Using measurability, find an easier proof that $m^*(\mathbf{C}) = 0$.
- **6.** Find a sequence of measurable sets $(E_n)_{n=1}^{\infty}$ so that $E_1 \supset E_2 \supset E_3 \supset \cdots$, and $m(E_n) = \infty$ for all n, but that $\bigcap_{n=1}^{\infty} E_n = \emptyset$.