1. Let $n_0, n_1, n_2, n_3, \cdots$ be an increasing sequence of distinct integers with $n_0 = 1$. Given a series $\sum_{n=1}^{\infty} a_n$, we define a new series $\sum_{m=1}^{\infty} b_m$ by letting $b_m = \sum_{j=n_{m-1}}^{n_m-1} a_j$ for each positive integer m. The series $\sum_{m=1}^{\infty} b_m$ is just the series $\sum_{n=1}^{\infty} a_n$ with parentheses inserted to group the terms.

- (a) Suppose $\sum_{n=1}^{\infty} a_n$ is a series such that $\lim_{n\to\infty} a_n = 0$ and suppose there is a number M so that $n_j n_{j-1} \leq M$ for each positive integer j. Prove that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{m=1}^{\infty} b_m$ converges and that when they both converge, they converge to the same sum.
- (b) Give an example of a divergent series $\sum_{n=1}^{\infty} a_n$ such that for the sequence of integers $n_j = 2j 1$, the corresponding series $\sum_{m=1}^{\infty} b_m$ converges.

Dfn. A rearrangement of the series $\sum_{n=1}^{\infty} a_n$ is a series $\sum_{m=1}^{\infty} c_m$ where $c_m = a_{\pi(m)}$ for some permutation π of the positive integers, that is, π is a one-to-one map of the positive integers onto the positive integers. Thus, a rearrangement of a series is a new series with the same terms, but in different order.

2. Show that if the series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then any rearrangement of the series, $\sum_{m=1}^{\infty} c_m$, also converges absolutely and $\sum_{m=1}^{\infty} c_m = \sum_{n=1}^{\infty} a_n$.

3. Suppose π is a permutation of the positive integers such that there is a number M so that $|\pi(j) - j| \leq M$. Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series and $\sum_{m=1}^{\infty} c_m$ is the rearrangement determined by π , then $\sum_{m=1}^{\infty} c_m$ also converges and $\sum_{m=1}^{\infty} c_m = \sum_{n=1}^{\infty} a_n$.

4. Let $\mathcal{A}_0 = \{f \in C([0,1]) : f(0) = 0\}$. (It is not hard to show that \mathcal{A}_0 is a closed subalgebra of C([0,1]), and you may use that fact without proof, if you wish.) Let \mathcal{P}_0 denote the algebra of polynomials such that p(0) = 0. Show that \mathcal{P}_0 is dense in \mathcal{A}_0 , that is, given f in \mathcal{A}_0 , show that for each $\epsilon > 0$, there is a polynomial p in \mathcal{P}_0 so that $|f(x) - p(x)| < \epsilon$ for all x in [0, 1].

- **5.** Let $\mathcal{A}_{00} = \{ f \in C([0,1]) : f(0) = f'(0) = 0 \}.$
 - (a) Show that \mathcal{A}_{00} is an algebra (or 'function algebra' in the terminology of Pugh), that is, show that \mathcal{A}_{00} is closed under addition, scalar multiplication, and function multiplication.
 - (b) Let \mathcal{P}_{00} denote the algebra of polynomials such that p(0) = p'(0) = 0. Show that \mathcal{P}_{00} is dense in \mathcal{A}_{00} , that is, given f in \mathcal{A}_{00} , show that for each $\epsilon > 0$, there is a polynomial p in \mathcal{P}_{00} so that $|f(x) p(x)| < \epsilon$ for all x in [0, 1].
 - (c) Is \mathcal{A}_{00} a closed subalgebra of C([0,1])?