Dfn. The Cantor set, \mathbf{C}, is the set of real numbers in $[0,1]$ that can be represented in base 3 by a ternary expansion using only the digits 0 and 2 . For example, $\frac{1}{3}=(.1000 \cdots)_{3}=(.0222 \cdots)_{3}$ and $\frac{2}{3}=(.2000 \cdots)_{3}=(.1222 \cdots)_{3}$ are both in C, but $\frac{7}{12}=(.1202020 \cdots)_{3}$ is not.

Dfn. The Cantor function, $c(x)$, is the function on $[0,1]$ defined by

$$
c(x)= \begin{cases}\left(. \frac{d_{1}}{2} \frac{d_{2}}{2} \frac{d_{3}}{2} \cdots\right)_{2} & x \in \mathbf{C}, x=\left(. d_{1} d_{2} d_{3} \cdots\right)_{3}, \text { where each } d_{j} \neq 1 \\ c\left(x_{\ell}\right)=c\left(x_{r}\right) & x_{\ell}=\max \{y \in \mathbf{C}: y<x\} \text { and } x_{r}=\min \{y \in \mathbf{C}: x<y\}\end{cases}
$$

That is, for x in the Cantor set, $c(x)$ has binary expansion obtained by dividing each digit in the ternary expansion of x by 2 . For example, $c\left(\frac{1}{3}\right)=c\left(\frac{7}{12}\right)=c\left(\frac{2}{3}\right)=\frac{1}{2}$.

1. Show that the Cantor function is continuous.
(Hint: Use ternary expansions with δ and binary expansions with ϵ.)
2. Suppose s_{n}, for $n=1,2,3, \cdots$ is a sequence of real numbers and $\lim _{n \rightarrow \infty} s_{n}=S$. For each positive integer n, let σ_{n} be defined by

$$
\sigma_{n}=\frac{1}{n}\left(s_{1}+s_{2}+s_{3}+\cdots+s_{n}\right)
$$

Prove that $\lim _{n \rightarrow \infty} \sigma_{n}=S$ also.
3. Decide whether each of the following series converges or diverges, and prove your answer.
(a) $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$
(b) $\quad \sum_{n=1}^{\infty} \frac{1}{n \sqrt{n+1}}$
(c) $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{2}}$
(d) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
4. Show that the series

$$
\frac{1}{1^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{2}}+\frac{1}{4^{3}}+\frac{1}{5^{2}}+\frac{1}{6^{3}}+\cdots
$$

converges, but the Ratio and Root tests do not apply.

