Homework 8

Definition A finite set of integers is said to be a set of consecutive integers if there are integers m and k so that the given integers are $m, m+1, m+2, \cdots, m+k$.

For example, the set $\{17,18,19,20\}$ is said to be a set of four consecutive integers because the set consists of 4 integers and (using $m=17$ and $k=3$ in the definition) the integers are $17,17+1,17+2$, and $17+3$.

Reading: Theorem: If n is the sum of five consecutive integers, then n is divisible by 5 . Conversely, if n is divisible by 5 , then n is the sum of five consecutive integers.

Proof: Suppose n is the sum of five consecutive integers. Then there is an integer m so that n is the sum of the integers $m, m+1, m+2, m+3$ and $m+4$, that is, we have

$$
n=m+(m+1)+(m+2)+(m+3)+(m+4)
$$

Removing the parentheses and rearranging the terms, this means,

$$
n=m+m+m+m+m+1+2+3+4=5 m+10
$$

In particular, this gives $n=5 m+10=5(m+2)$ and, since $m+2$ is an integer, this shows n is divisible by 5 .

Conversely, suppose n is divisible by 5 , say $n=5 a$. Let $m=a-2$ so $a=m+2$. Then $n=5(m+2)=5 m+10=m+m+m+m+m+1+2+3+4=m+(m+1)+m+2)+(m+3)+(m+4)$ which shows that n is sum of five consecutive integers.

1. Write 1245 as the sum of five consecutive integers.
2. (a) Prove: If n is the sum of 4 consecutive integers, then n is not divisible by 4 .
(b) Write 1346 as the sum of four consecutive integers.
3. Suppose x and y are odd integers. Show that $x^{2}+y^{2}$ is not a perfect square, that is, that $x^{2}+y^{2}$ is not the square of an integer.
4. Find a polynomial, p, of degree three or less, that satisfies $p(-1)=4, p(2)=3, p(4)=0$, and $p(5)=-1$.
5. Prove: If a, b, and c are distinct real numbers and f and g are polynomials of degree 2 that satisfy $f(a)=g(a), f(b)=g(b)$, and $f(c)=g(c)$, then f and g are actually the same polynomial.
6. Although, generally, it requires a polynomial of degree 3 to interpolate four points, there is a polynomial, q, of degree 2 that satisfies $q(-1)=9, q(1)=3, q(2)=6$, and $q(3)=13$. Find a polynomial, q, of degree 2 that solves this interpolation problem.
