Homework 7

1. The polynomial $x^{2}-5 x+6$ has roots 2 and 3 . Find the roots of $6 x^{2}-5 x+1$.
2. Let $f(x)=2 x^{4}-3 x^{2}+4 x-5$ and let $g(x)=x^{2}-5 x-2$. Find $q(x)$ and $r(x)$ so that the degree of $r(x)$ is less than the degree of $g(x)$ and

$$
f(x)=g(x) q(x)+r(x)
$$

3. Use the Euclidean algorithm to find the greatest common divisor of the following pairs of polynomials:

$$
\begin{array}{llll}
\text { (a) } & x^{2}+24 x+63 & \text { and } & x^{3}-37 x-84 \\
\text { (b) } & x^{3}-37 x-84 & \text { and } & x-7 \\
\text { (c) } & x^{4}+118 x-35 & \text { and } & x^{2}-2 x-35
\end{array}
$$

4. What are the common roots of the pairs of polynomials (note the overlap with Exercise 3):
(a) $\quad x^{2}+24 x+63 \quad$ and $\quad x^{3}-37 x-84$
(b) $x^{4}+118 x-35$ and $x^{2}-2 x-35$
(c) $x^{4}-x^{3}-7 x^{2}+x+6$ and $2 x^{4}-7 x^{3}-20 x^{2}+49 x+60$
5. Suppose

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{2} x^{2}+a_{1} x+a_{0}
$$

is a polynomial with $a_{n} \neq 0$ and $a_{0} \neq 0$. Show that if α is a root of f, then $1 / \alpha$ is a root of the polynomial

$$
g(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots a_{n-2} x^{2}+a_{n-1} x+a_{n}
$$

6. (a) The polynomial $x^{3}-37 x+84$ has roots $-7,3$, and 4 . What are the roots of $84 x^{3}-37 x^{2}+1 ?$
(b) The polynomial $2 x^{3}-x^{2}-16 x+15$ has roots $-3,5 / 2$, and 1 . What are the roots of $15 x^{3}-16 x^{2}-x+2$?
