Homework 5

1. (Signature for divisibility by 11) Suppose an integer n has decimal representation $n=d_{2 j} d_{2 j-1} d_{2 j-2} \cdots d_{4} d_{3} d_{2} d_{1} d_{0}$. The signature (or signature for divisibility by 11) of n is

$$
s=d_{2 j}-d_{2 j-1}+d_{2 j-2}-\cdots+d_{4}-d_{3}+d_{2}-d_{1}+d_{0}
$$

Prove that n is divisible by 11 if and only if s, the signature of n, is divisible by 11 . (For example, we can tell that $12,356,322$ is divisible by 11 because

$$
-1+2-3+5-6+3-2+2=12-12=0
$$

is divisible by 11.)
2. (More on signature divisibility by 11) Use the ideas of Exercise 1 and "casting out nines" to show that the remainder when dividing n by 11 is the same as the remainder when dividing s, the signature of n, by 11 . (The notation in this exercise is the same as in Exercise 1.)
3. Use the Theorem from the reading on the test and the observation

$$
2(12641)=25282=(159)^{2}+1
$$

to write 12641 as the sum of the squares of two integers.
4. For which integers, n, is $n^{2}+3 n+8$ divisible by 2 ?
5. For which integers, n, is $n^{2}+3 n+8$ divisible by 3 ?
6. For which integers, n, is $n^{2}+3 n+8$ divisible by 4 ?

