Homework 4

1. (Casting out nines)

Suppose an integer n has decimal representation $n=d_{k} d_{k-1} \cdots d_{2} d_{1} d_{0}$. The sum of the digits of n is $s=d_{k}+d_{k-1}+\cdots+d_{2}+d_{1}+d_{0}$. Prove that n is divisible by 9 if and only if s, the sum of the digits of n, is divisible by 9 . (For example, we can tell that 37,215 is divisible by 9 because $3+7+2+1+5=18$ is divisible by 9 .)
2. Suppose m, n, and d are positive integers. Prove that the remainder when dividing m by d is equal to the remainder when dividing n by d if and only if $m-n$ is divisible by d.
3. (More on Casting out nines) Use the ideas of Exercises 1 and 2 to show the following. The notation in this exercise is the same as in Exercise 1.
(a) The remainder when dividing n by 9 is the same as the remainder when dividing s, the sum of the digits of n, by 9 .
(b) Prove that n is divisible by 3 if and only if s, the sum of the digits of n, is divisible by 3 .
4. Use Theorem 11 of Chapter 1 of Discourses on Algebra to find all the rational roots of these polynomials:
(a) $x^{2}-24 x+63$
(b) $x^{3}-37 x-84$
(c) $x^{3}-42 x-49$
(d) $x^{4}-118 x-35$

