Homework 2

Definition If a and b are integers, $a \neq 0$, we say b is divisible by a or a divides b, and write a|b, if there is an integer x so that b = ax.

- 1. In the following statements, suppose a, b, c, x, and y are integers.
 - (a) Show that if a|b, then a|(bc).
 - (b) Prove that if a|b and b|c, then a|c.
 - (c) Show: If a|b and a|c, then a|(bx + cy) for any integers x and y.
 - (d) Prove: If a|b and b|a, then $a = \pm b$.
- 2. Use the fact that every integer is either even or it is odd to show that for all integers, n, the number $n^2 n$ is divisible by 2.
- **3.** Show that for each integer n, either n-1 is divisible by 3 or n is divisible by 3 or (n+1) is divisible by 3.
- 4. (a) Show that for each integer n, the number n³ n is divisible by 3.
 (b) Prove that for each integer n, the number n³ n is divisible by 6.

Definition If b and c are integers, not 0, such that a|b and a|c, we say a is a common divisor of b and c. Of course, 1 is divisor every integer, so for any integers b and c, 1 is a common divisor of b and c. Since every positive divisor of b is less than or equal to |b|, there are only finitely many divisors of b, and every pair of integers has only finitely many common divisors. The greatest common divisor of b and c is the largest of the positive, common divisors of b and c.

For example, the common divisors of 63 and 147 are ± 1 , ± 3 , ± 7 , and ± 21 , so the greatest common divisor of 63 and 147 is 21.

5. Find the greatest common divisor of each of given pairs of integers:

(a)	24 and 84	(b)	525 and 315
(c)	3003 and 2805	(d)	11433 and 23051