Homework 2

Definition If a and b are integers, $a \neq 0$, we say b is divisible by a or a divides b, and write $a \mid b$, if there is an integer x so that $b=a x$.

1. In the following statements, suppose a, b, c, x, and y are integers.
(a) Show that if $a \mid b$, then $a \mid(b c)$.
(b) Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
(c) Show: If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for any integers x and y.
(d) Prove: If $a \mid b$ and $b \mid a$, then $a= \pm b$.
2. Use the fact that every integer is either even or it is odd to show that for all integers, n, the number $n^{2}-n$ is divisible by 2 .
3. Show that for each integer n, either $n-1$ is divisible by 3 or n is divisible by 3 or ($n+1$) is divisible by 3 .
4. (a) Show that for each integer n, the number $n^{3}-n$ is divisible by 3 .
(b) Prove that for each integer n, the number $n^{3}-n$ is divisible by 6 .

Definition If b and c are integers, not 0 , such that $a \mid b$ and $a \mid c$, we say a is a common divisor of b and c. Of course, 1 is divisor every integer, so for any integers b and $c, 1$ is a common divisor of b and c. Since every positive divisor of b is less than or equal to $|b|$, there are only finitely many divisors of b, and every pair of integers has only finitely many common divisors. The greatest common divisor of b and c is the largest of the positive, common divisors of b and c.

For example, the common divisors of 63 and 147 are $\pm 1, \pm 3, \pm 7$, and ± 21, so the greatest common divisor of 63 and 147 is 21 .
5. Find the greatest common divisor of each of given pairs of integers:
(a) 24 and 84
(b) 525 and 315
(c) 3003 and 2805
(d) 11433 and 23051

