Homework 11

Read Chapter 4, Section 4 "Proof by Mathematical Induction" in Bridge to Mathematics

1. Prove that the sum of the first n integers is $n(n+1) / 2$.
2. Prove that the sum of the squares of the first n integers is $n(n+1)(2 n+1) / 6$.
3. Prove that the sum of the cubes of the first n integers is $n^{2}(n+1)^{2} / 4$.
4. Find a formula for the sum of the first k even integers and show that your formula works.
5. Find a formula for the sum of the first k odd integers and show that your formula works.
6. The sequence a_{n} is defined recursively by $a_{1}=1$ and $a_{n+1}=1+\frac{1}{2+a_{n}}$.
(a) Write the first 4 terms of the sequence.
(b) Show that for each positive integer n, we have $a_{n} \geq 1$.
(c) Use your answer to part (b) to show that for each positive integer n, we have $a_{n} \leq$ $4 / 3$.
