Homework 12

1. Let $f(x)$ be a polynomial with rational coefficients. Prove that there exists a polynomial $g(x)$ (which depends on $f(x)$!) with integer coefficients such that $f(\alpha)=0 \Rightarrow g(\alpha)=0$.
2. If α is a possible value for x, and $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, prove, using polynomial division (that is, one step of the Euclidean Algorithm), that the remainder when dividing $f(x)$ by $(x-\alpha)$ is $f(\alpha)$.
3. Find the greatest common divisor of the following pairs of polynomials:
(a) $f(x)=6 x^{4}-18 x^{2}+12$ $g(x)=15 x^{4}-15 x^{3}-60 x^{2}+30 x+60$
(b) $f(x)=x^{4}-5 x^{3}+8 x^{2}-10 x+12$

$$
g(x)=2 x^{4}-12 x^{3}+20 x^{2}-24 x+32
$$

(c) $f(x)=x^{3}-3 x^{2}+3 x-9$

$$
g(x)=x^{5}+x^{4}-x^{3}-x^{2}-12 x-12
$$

4. Determine if $(x-\alpha)$ is a factor of $f(x)$ for the following values of α and polynomials $f(x)$:
(a) $\alpha=\frac{1}{2}, f(x)=\frac{16}{175}\left(x^{3}-2 x^{2}-5 x+6\right)$
(b) $\alpha=-2, f(x)=2 x^{3}+6 x^{2}-2 x-6$
(c) $\alpha=0, f(x)=g(x)+1$ where $g(0) \neq-1$
(d) $\alpha=i, f(x)=x^{4}-x^{2}-2$ where $i=\sqrt{-1}$
