Math 300 Due November 6

Homework 12

- 1. Let f(x) be a polynomial with rational coefficients. Prove that there exists a polynomial g(x) (which depends on f(x)!) with integer coefficients such that $f(\alpha) = 0 \Rightarrow g(\alpha) = 0$.
- **2.** If α is a possible value for x, and $f(x) = a_0 + a_1 x + \ldots + a_n x^n$, prove, using polynomial division (that is, one step of the Euclidean Algorithm), that the remainder when dividing f(x) by $(x \alpha)$ is $f(\alpha)$.
- 3. Find the greatest common divisor of the following pairs of polynomials:

(a)
$$f(x) = 6x^4 - 18x^2 + 12$$

 $g(x) = 15x^4 - 15x^3 - 60x^2 + 30x + 60$

(b)
$$f(x) = x^4 - 5x^3 + 8x^2 - 10x + 12$$

 $g(x) = 2x^4 - 12x^3 + 20x^2 - 24x + 32$

(c)
$$f(x) = x^3 - 3x^2 + 3x - 9$$

 $g(x) = x^5 + x^4 - x^3 - x^2 - 12x - 12$

4. Determine if $(x - \alpha)$ is a factor of f(x) for the following values of α and polynomials f(x):

(a)
$$\alpha = \frac{1}{2}, f(x) = \frac{16}{175}(x^3 - 2x^2 - 5x + 6)$$

(b)
$$\alpha = -2$$
, $f(x) = 2x^3 + 6x^2 - 2x - 6$

(c)
$$\alpha = 0, f(x) = g(x) + 1$$
 where $g(0) \neq -1$

(d)
$$\alpha = i, f(x) = x^4 - x^2 - 2$$
 where $i = \sqrt{-1}$