Homework S3

In the handout on inverse functions, we showed that if a function is continuous and one-to-one on an interval, then it is strictly increasing or strictly decreasing. The following is a converse, but does not require the continuity.

1. Suppose h is defined on the interval I and strictly increasing on that interval. Prove that h is one-to-one on I.

In the following, we will invent a new function and develop some of its properties.
Define the function S by, for x a real number,

$$
S(x)=\int_{0}^{x} \frac{d t}{\sqrt{t^{2}+1}}
$$

Using the Riemann sums for this integral (with $n=100$), it follows that $S(1)=.881$ to three decimal places.
2. Explain why S is defined for every real number. This shows that the domain of S is \mathbb{R}.
3. Find $S^{\prime}(x)$ and $S^{\prime \prime}(x)$ and use your results to show that S is strictly increasing on \mathbb{R}.
4. Find a relationship between $S(x)$ and $S(-x)$.
5. Show that $\sqrt{t^{2}+1}<t+1$ for $t>0$ and use the inequality to show that $S(x)>\ln (x+1)$ for $x>0$.
6. Find $\lim _{x \rightarrow \infty} S(x)$ and $\lim _{x \rightarrow-\infty} S(x)$. What is the range of S, that is, what is the set $\{y: y=S(x)$ for some x in $\mathbb{R}\}$?
7. Use the results of the previous exercises to draw a graph of S.
8. Use an argument similar to that of Exercise 5 above to see that there is a constant C so that $S(x)<C+\ln (x-1)$ for $x \geq 2$.

Challenge Problem:

(This problem will never be assigned or collected. There are solutions that are easy to understand, but there are no solutions that are easy to find!)

Find a function f that maps $[0,1]$ one-to-one and onto $(0,1)$.

