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19. kovethatif f : A + Eisbijectiveandg: B + Cisbijective,thenthecompositego f isa
bijective map of A onto C.

20. Let f : A + B and g : B -+ Cbefunctions.
(a) Show that if g o / is injective, then / is injective.
(b) Show thatrf g o / is surjective, then g is surjective.

21, Prove Theorem 1.1.14.

22. Let f ,gbefunct ionssuchthat (go"f)(x) :x foral lx e D(f)  and (" f  ogXy)-y foral l
y e D(il. Prove that g : f-r.

Section 1.2 MathematicalInduction

Mathematical Induction is a powerfril method of proof that is frequently used to establish
the validity of statements that are given in terms of the natural numbers. Although its utility
is restricted to this rather special context, Mathematical Induction is an indispensable tool
in all branches of mathematics. Since many induction proofs follow the same formal lines
of argument, we will often state only that a result follows from Mathematical Induction
and leave it to the reader to provide the necessary details. In this section, we will state the
princtple and give several examples to illusfiate how inductive proofs proceed.

We shall assume familiarity with the set of natural numbers:

N  : :  { 1 , 2 , 3 ,  .  . . } ,

with the usual arithmetic operations of addition and multiplication, and with the meaning
of a natural number being less than another one. We will also assume the following
fundamental property of N.

1.2.1 Well-Ordering Property of N Every nonernpty subset o/ N has a least elernent.

A more detailed statement of this properfy is as follows: If ,S is a subset of N and if
S + g,then there exists m e S such that rn < kfor all ft e S.

On the basis of the Well-Ordering Property, we shall derive a version of the Principle
of Mathematical Induction that is expressed in terms of subsets of N.

1.2.2 Principle of Mathematical Induction Let S be a subsef of N that possesses fhe
two properties:

(1) The number I e ,S.
(2) Forevery/c e N, rt k e,S, then k * 1 e S.

Then we have S : N.

Proof, Suppose to the contrary that ,S # N. Then the set N\,S is not empty, so by the
rWell-Ordering Principle it has a least element lz. Since 1 e S by hypothesis (1), we know
that m > 1. But this implies that m - | is also a natural number. Since m - L < m and
since m is theleast element in N such that m # S,we conclude that rn - 1 e S.

We now apply hypothesis (2) to the element k :: m - | in,S, to infer that k * I :
(m - 1) + t : z belongs to S. But this statement contradicts the fact thatm f S. Since z
was obtained from the assumption that N\S is not empty, we have obtained a contradiction.
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1.2 MATTIEMATICAL INDUCTION 13

The Principle of Mathematical Induction is often set forth in the fra:nework of proper-
rthr ra-uttntanuur$ etharr*rnotr:nr tnnnlyrs, tr P(rt) rir c.nyionirgrArr D'tg*anan*arhRn'rr € rN
then P(n) may be true for some values of n and false for others. For example, if Pr(n) is
the statement: "n2 : n", then P, (1) is tnre while Pr(n) is false for all n ) l,n e N. On
the other hand, if Pr(n) is the statement: "n2 > 1", then PzQ) is false, while Pr(n) is true
f o r a l l f l t T , n e N .

In this context, the Principle of Mathematical Induction can be formulated as follows.

For eachn € N, let P(n) be a statement aboutn. Supposethat:

(1') P(1) is true.
(2') For every k e N, it P(k) is [rue, then P(k * 1) is nrue.

Then P(n) is trle for all n e N.

The connection with the preceding version of Mathematical Induction, given n 1.2.2,
is made by letting ,S :: tn e N : P(n) is true). Then the conditions (1) and (2) of 1.2.2
correspond exactly to the conditions (l') and (2'),respectively. The conclusion that ,S : N
n 1.2.2 corresponds to the conclusion that P(n) is tnre for all n e N.

In (2') the assumption "if P(k) is true" is called the induction hypothesis. In estab-
lishing (2'), we are not concerned with the actual tmth or falsity of P(k), but only with
the validity of the implication "if P(fr), then P(k + 1)". For example, if we consider the
statements P(n): "n : n * 5", then (2') is logically correct, for we can simply add I to
both sides of P (k) to obtain P (k + l). However, since the statement P (7): "7 : 6" is false,
we cannot use Mathematical Induction to conclude thatn : n * 5 for all n e N.

It may happen that statements P(n) are false for certain natural numbers but then are
tme for all n > no for some particular no. The hinciple of Mathematical Induction can be
modified to deal with this situation. We will formulate the modified principle, but leave its
verification as an exercise. (See Exercise 12.)

1.2.3 Principle of Mathematical Induction (second version) I*t no e N and let P(n)

r:ffi:rff[:ff
(1) The statement P(ns) is true.
@ For all k 7 no, the tuth of P (k) implies the autlt of P (k + 1).

Then P(n) is tue for alln ) il,.

Sometiines tlie number noin (1) is callbd the base, since it serves as the starting point,
and the implication in (2), which can be written P(k) + P(k + 1), is called the bridge,
since it connects the case k to the case ft * 1.

The following examples illusftate how Mathematical lnduction is used to prove asser-
tions about nafural numbers.

1.2,4 Examples (a) For each z € N, the sum of the first n natural numbers is given by

l +2+ . . . *n : ln@+l ) .

To prove this formula, we let S be the set of all z e N for which the formula is mre.
we mrrst verify that conditions (1) and (2) of 1.2.2 are satisfied. rf n :1, then we have
1 : L' 1' (t * 1) so that 1 e,S, and (1) is satisfied. Next, we assume thatk e Sand wish
to infer from this assumption that k + | e ,S. Indeed,rf k € ,S, then
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If we add & * I to both sides of the assumed equality, we obtain

|  +2+ . . .  +k + ( f t  + 1)  :  l *1tc*  1)  + (k + 1)
: |{tc + lxe + D.

Since this is the stated formula for n :k* 1, we conclude that k* 1e,S. Therefore,
condition (2) of l.2.2is satisfied. Consequently, by the Principle of Mathematical Induction,
we infer that S : N, so the formula holds for all n e N.

O) For each n € N, the sum of the squares of the first n natural numbers is given by

72  +22  +  . .  .  *  n2  :  l n@ +  r ) (zn+  1 ) .

To establish this formula, we note that it is bue for n: 1, since l' : * . t .2. 3. If
we assume it is tnue for /c, then adding (k + l)2 to both sides of the assumed formula gives

rz +22+ .. .  + k2 + (k + D2 - l t t tc + t)(2k* l)  + (k + D2
- *( , t  +r)ekz +k+ 6k+6)
: fi{tc + lxt +z)(zk + 3).

Consequently, the formula is valid for all n e N.
(c) Given two real numbers c and b, we will prove that a - b is a factor of a' - b" for
a l l n e N .

First we see that the statement is clearly tnre for n : l.If we now assume that a - b
is a factor of ak - be. then

ok+r _ 6k+t _ ak+1 _ abk + o6k _ 6k+r
- a(ak - b\ + bk(a - b).

By the induction hypothesis, a - b is a factor of a(ak - br) and it is plainly a factor of
bo(o - b). Therefore, a - b is a factor of ak+r - 6ktr, and it follows from Mathematical
Inductionthata -Disafactor of a'-bn for alln e N.

A variety of divisibility results can be derived from this fact. For example, since
ll - 7 = 4, we see that ll" - 7' is divisible by 4forall n e N.
(d) The inequality 2n > 2n * I is false for n : l,2,bntit is tme for n :3. If we assume
that}k > 2k * 1, then multiplication by 2 gives, when 2k + 2 > 3,the inequality

2k+r . 2Qk + l) : 4k * 2 : 2k + (?* + 2) > 2k* 3 : 2(k +1) + t.

Since2k+2>3foral lk>T,thebridgeisval idforal lk>7(eventhougbthestatement
is false for k - 1,2). Hence, with the base no : 3, we can apply Mathematical Induction
to conclude that the inequality holds for all n > 3.
(e) The inequfrty 2" < (n * 1)! can be established by Mathematical Induction.

We first observe that it is true for n:1, since 2r :2:l + l, If we assnme that
2k < (k + l)!, itfollowsfrom the fact that2 < k+2that

2 k + t  - z - 2 k  < 2 & +  1 ) !  <  ( f t +  z ) ( k +  t ) !  -  ( k + 2 ) t .

Thus, if the inequality holds for k, then it also holds for k * l. Therefore, Mathematical
Induction implies that the inequality is tme for all z e N.
(f) If r e IR, r l l,andn e N,then
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This is the formula for the sum of the terms in a "geometric progression". It can
be established using Mathematical Induction as follows. First, rf n :1, then I f r -
(t - ,2) /(1 - r). If we assume the tnrth of the formula for n : k and add the term r&*l to
both sides, we get (after a little algebra)

1 - ,k* l  1  - rk+z
l * r+ rk  + . . .+  rk+r  _  

#* rk+r :  f t ,
which is the formula for n = k + t.Therefore, Mathematical Induction implies ttre validity
of the formula for all n e N.

[This result can also be proved without using Mathematical Induction. If we let
J n  i :  l + r  + 1 2  + . . .  + r o , t h e n  t s n : r  * 1 2  +  " ' * r n * l , s o t h a t

(1 - r)sn - Jn - rs, : | - r'#1,

If we divide by I - r,we obtain the stated formula.l
(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd
conclusions. The reader is invited to find the error in the 'trroof' of the following assertion.

Claim: If n e N andif themaximumof thenaturalnumbers p and qisn,thet p - q.

.5ltoof." Let S be the subset of N for which the claim is true. Evidently, I e S since if
p, g € N and their maximum is 1, then both equal I and so p : q. Now assume that k e S
andthatthemaximumof p amrdq isft * l.Thenthemaximum of p - l and q - | isk.But
since k e S, then p - I = q - tand therefore p : q.Thus, ft + I € S, and we conclude
that the assertion is true for all n e N.
(h) There axe statements that are tnre for many natural numbers but that are not tnre for
all of them.

Forexample,theformulap(n) :: n2 - n * 4l givesaprimenumberforn :1,2, "' ,
40. However, p(41) is obviously divisible by 41, so it is not a prime number. D

Another version of the Principle of Mathematical Induction is sometimes quite useful.
It is called the " hinciple of Strong Induction", even though it is in fact equivalentto 1'.2.2.

1.2.5 Principle of Strrong Induction Let S be a subser a/N such that

(1") I e ^S.
(2") For every& e N, tf[,z,.. -,kl C S, thenf + 1 € ^S.

Then S = N.

We will leave it to the reader to establish the equivalence of 1.2.2 and 1.2.5.

Exencises for Section 1.2

1. Prove that 1/1 .2+ l /2.3 +.  . .* l /n(n + 1) :  n/(n *  l )  foral lz e N.

2. prove that 13 +23 + ... * n3 : lln(n+ 1)]'for all n e N.

3 .  Provetha t3+ 11+. . .+ (82  -5 )  =  4nz  -n  fo ra l l z  e  N.

4 .  Provetha t12  +32 + . . .+ (2n-D2: (4n3 -n ) /3 fo ra l ln  e  N.

5 .  Provetha t  12  -  22  +32 + . ' .+ ( - l ) '+ rnz : ( - l ) "+ rn(n+1) /z fo ra l l z  e  N.
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6. Prove that z3 * 5n is divisible by 6 for all z e N.

7. Prove rhatlb - 1 is divisible by 8 for all z e N.

8. Prove that 5' - 4n - I is divisible by 16 for all z e N.

9. Proverhatn3 + (n * 1)3 + (n+2\3 isdivisiblebygforalln e N.

10. Conjecture aformulaforthe sum l/l .3 + l/3. 5 + . . . + l/(2n - l\(2n * 1), and prove your
conjectue by using Mathematical Induction.

11. Conjecture afonnulaforthe sumof thefrstz oddnaturalnumbers 1+3+...*(2n-1),
and prove yourformulaby using Mathematical Induction.

12. hove the Principle of Mathematical Induction 1.2.3 (second version).

13. Prove that n < 2n fot all n e N.

14. Provethat2n < n! foralln > 4, n e N.

15. hove that2n - 3 < 2n-2 for all n > 5,2 e N.

16. Find all Datural numben n such tbatn2 < 2".hove yotu assertion.

L7. Find the largest natural number m such that n3 - n is divisible by n for all n e N. Prove your
assertion.

18. hove hatt / .  l+Y.n+.. .+ t l^ f r .  ,nforal ln € N.

19. Let Sbe asubsetof N such that (a) 2! eS forall ft eN, and (b) if /ce S and fr>2, then
k - I e ,S. hove that S: N.

20. I,et the numbers xrbe defined as follows: xr i: l, x, i:2, and xo+2 i: L@n*, * x) for all
n e N. UsethePrincipleof Shonglnduction (1.2.5) toshowthat I Sx, S 2foralln e N.

Section 1,3 Finite and rnftnite Sets

When we count the elements in a set, we say "one, two, three,...", stopping when we
have exhausted the set. From a mathematical perspective, what we are doing is defining a
bijective mapping between the set and a portion of the set of natural numbers. If the set is
such that the counfing does not terminate, such as the set of natural numbers itsef, then we
describe the set as being infinite.

The notions of "finite" and "infinite" are extremely primitive, ild it is very likely
that the reader has never examined these notions very carefully. In this section we will
define these terms precisely and establish a few basic results and state some other important
results that seem obvious but whose proofs are a bit tricky. These proofs can be found in
Appendix B and can be read later.

1.3.1 Definition (a) The empty set 0 is said to have 0 elements.

O) If n e N, a set S is said to have n elements if there exists a bijection from the set

\ , :  {7,2, .  .  .  ,  nl  onto ,S.
(c) A set ̂ S is said to be finite if it is either empty or it has n elements for some n € N.
(d) A set ,S is said to be inffnite if it is not finite.

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n
elements if and only if there is abijection from S onto the set {L,2,. . . ,nl. Also, since the
composition of two bijections is a bijection, we see that a set ,S, has n elements if and only
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1.3 FIMTE AND INFIN]TE SETS 17

ifthere is a bijection from ,S, onto another set ^S, that has n elbments. Furtlier, a set { is
finite if and only if there is a bijection from t onto another set T, that is finite.

It is now necessary to establish some basic properties of finite sets to be sure that the
definitions do not lead to conclusions that conflict with our experience of counting. From
the definitions, it is not entirely clear that a finite set might not have n elements for more
than one value of n. Also it is conceivably possible that the set N :: {1,2,3, . . .} might be

a finite set according to this definition. The reader will be relieved that these possibilities
do not occur, as the next two theorems state. The proofs of these assertions, which use the
fundamental properties of N described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness lheorem If S is a finite set, then the ntmber of elemenfs in ^l is a
untQue npm6errir N.

13.3 Theorem The setN ofnarural numbers is an fufinite set.

The next result gives some elementary properties of finite and infinite sets.

7.3.4 lleorem (a) If A t's a set wtlh m elements and B is a set with n elements and tf
A n B : A, then AU B has m * n elements.

O) If Aisasetwithm € N elements andC c A is asetwithl element,then A\C is a
setwifhm-lelements.
(c) If C is an infinite set and B is a finite set, then C\B is an infinite set.

Proof, (a) Let f be a bijection of N, onto A, and let g be a bijection of \ onto
B. We def ine h on Nr+n by h(t)  : -  

" f ( f )  
for  i  :  1, . . .  ,m and h( i ) : :  g( i  -m) for

i: m + l, . ..,m * n. S/e leave it as anexercise to show thath is abijection from N.*n
onto A U B.

llleproofs of parts(b)and (c) areleft ro thereadeq, seeExercise2. e.ED.
It may seem "obvious" that a subset of a finite set is also finite, but the assertion must

be deduced from the definitions. This and the corresponding statement for infinite sets are
established next.

13.5 Theorem Sqo-oose that S andT are sefs and that I -g S.

(a) If S is a finite set, then T is a finite set.
(b) If T is an infinite set, then S is an infnite set

Proof. (a) If T : A, we already know that I is a finite set. Thus we may suppose that
f + A. The proof is by induction on the number of elements in S.

If ,S has I element, then the only nonempty subset ? of S must coincide with S, so I
is a finite set.

Suppose that every nonempty subset of a set with /< elements is finite. Now let ,S be
asethav ingk+ le lements (so thereex is tsab i jec t ion /o fN** ,on toS) ,and le t fcS.
If f(k + D e T, wecan consider T to be a subset of S, :- S\{/(k + 1)}, which has &
efements 6y Theorem 1.3.4(b). Hence, by the induction hypothesis, I is a finite set.

ontheotherhand, r f  f  (k *  1)  e T, then Tr: :  r \ t / ( f r+ 1)) isasubsetof  sr .  Since
,St has /c elements, the induction hypothesis implies that { is a finite set. But this implies
that T : Trt) {f (k + 1)} is also a finite set.
(b) This assertion is the confiapositive of the assertion in (a). (See Appendix A for a
discussion of the contr4positjve-) e.ED.
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Countable Sets

We now infroduce an important type of infinite set.

1.3.6 Definition (a) A set S is said to be denumerable (or countably infinite) if there
exists a bijection of N onto S.

(b) A set ,S is said to be countable if it is either finite or denumerable.
(c) A set ,f is said to be uncountable if it is not countable.

From the properties of bijections, it is clear that S is denumerable if and only if there
exists a bijection of S onto N. Also a set S, is denumerable if and only if there exists a
bijection from ,S, onto a set S, that is denumerable. Further, a set I, is countable if and
only if there exists a bijection from t onto a set T, that is countable. Finalln an infinite
countable set is denumerable.

1.3.7 Examples (a) The set E :: l?n : n e N) of aven natural numbers is denumerable,
since the mapping "f : N + E defined by f (n) :-- 2n for n e N, is a bijection of N onto E.

Similarly, the set O :: {2n - | : n e N} of oddnattsalnumbers is denumerable.
(b) The set Z of all integers is denumerable.

To constnrct a bijection of N onto Z,we map I onto 0, we map the set of even natural
numbers onto the set N of positive integers, and we map the set of odd natural numbers
onto the negative integers. This mapping can be displayed by the enumeration:

Z :  { 0 , 1 ,  - 1  , 2 ,  - 2 , 3 ,  - 3 ,  .  .  . } .

(c) The union of trpo disjoint denumerable sets is denumerable.
Indeed, tf A : {a, a2, a3, . ..} and B : {bt, b2, b3,. . .}, we can enumerate the ele-

ments of A U B as:

a1,  by a2,  b2,  a3,  b3,  .  -  .

1.3.8 Theorem The setN x N is denumerable.

InformalProof. RecallthatN x Nconsistsof allorderedpairs (m,n),wherern,n € N.
We can enumerate these pairs as:

tr
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(1,  l ) ,  (1 ,2) ,  (2 , l ) ,  (1 ,  3) ,  (2 ,2) ,  (3 ,  l ) ,  (1 ,  4) ,  .  .  .  ,

according to increasing sum m * n, and increasingm. (See Figure 1.3.1.) Q.E.D.

The enumeration just described is an instance of a "diagonal procedure", since we
move along diagonals that each contain finitely many terms as illustrated in Figure 1.3.1.
While this argument is satisfying in that it shows exactly what the bijection of N x N + N
should do, it is not a "formal proof', since it doesn't define this bijection precisely. (See
Appendix B for a more formal proof.)

As we have remarked, the construction of an explicit bijection between sets is often
complicated. The next two results are useful in establishing the countability of sets, since
they do not involve showing that certain mappings are bijections. The first result may seem
intuitively clear, but its proof is rather technical; it will be given in Appendix B.
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1.3.9 Theorem Suppose that S andT are sefs and that f c ,S.

(a) If ,S is a countable set, thenT is a countable set.

O) If T is an uncountable set, then S is an uncountable set.

7,3.70 l'lhmt=m Ik folbrrmg stfiintats re,;qit,,zleft'

(a) S is a countable set.

(b) There exrsfs a surjrction of N onto S.

(c) There exisfs an injection of ,S lnto N.

hoof. (a) =+ O) If S is finifie, there exists a bijection ft of some set \ onto S and we
define H onNby

k : 1 , . , . , r 1 ,
k > n .

Then H is a surjection of N onto,S.
If ^S is denumerable, there exists a bijection H of N onto S, which is also a surjection

of N onto S.
(b) =+ (c) If f/ is a surjection of N onto 5, we define H, : S + N by letting Hr (s) be
the least element in the set ly'-l(r) :: ln e N : H(n) - s]. To see that H, is an injection
of ,SintoN,notethatif r, t € ^Sand f,rt i: HrG) - Hr(r), then s : H(nr): t.
(c) =+ (a) tr H, is an injection of S into N, then it is a bijection of S onto Hl(S) g N.
By Theorem 1.3.9(a), Hl(S) is countable, whence the set S is countable. Q.E.D.

7.3.17 Fttwn:m .ffirsra'@ otcaTt tztTitttat nnnrha:lrs rtbrrnvrutth,

Proof, The idea of the proof is to observe that the set Q+ of positive rational numbers is
contained in the enumeration:

which is another "diagonal mapping" (see Figure 1.3.2). However, this mapping is not an
injection, since the ffierent fractions i -d fr represent the same rational number.

To proceed more formally, note that since N x N is countable Oy Theorem 1.3.8),
it follows from Theorem 1.3.10(b) that there exists a surjection f of N onto N x N. If
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Figure 13.2 The set Q+

g : N x N -+ Q* is the mapping that sends the ordered pak (m,n) into the rational num-
ber having a representation n / n, then g is a surjection onto Q+. Therefore, the composition
g o f is a surjection of N onto Q+, and Theorem 1.3.10 implies that Q+ is a countable set.

$imil6ly, the set Q- of all negative rational numbers is countable. It follows as in
Example 1.3.7(b) that the set Q - A- U t0) U Q* is countable. Since Q contains N, it
must be a denumerable set. Q.E.D.

The next result is concerned with 'nions of sets. In view of Theorem 1.3.10, we need
not be worried about possible overlapping of the sets. Also, we do not have to construct a
bijection.

1.3.!2 Theorem ff A^ is a countable set for each m e N, fhen the tnion A :: U74 A*
is countable.

hoof, Foreachm €N, letg^beasurjectionof Nonto A^.Wedefinef : N x N-+ A
by

tQn, n) : :  g.@).

Weclaimtbatt lr isasurject ion.Indeed,i feeA,thenthereexistsaleastneNsuchthat
a e A^, whence there exists a least n e N such that 4 : gm(n). Therefote, a : $ (m, n).

Since N x N is countable, it follows from Theorem 1.3.10 that there exists a surjection

"f : N -+ N x N whence t o/ is a surjection of N onto A. Now apply Theorem 1.3.10
again to conclude that A is countable. Q.E.D.

Remark A less formal (but more inhritive) way to see the truth of Theorem 1.3.12 is to
enumerate the elements of A^,m € N, as:

A t  :  ( e y ,  c 1 2 ,  a p , ' ' ' \ ,

Az : Ia21, a22, a23, . . .I,

As : {a31, o32, a33, . . -1,

We then enumerate this array using the "diagonal procedure":

Al l ,  Al2,  A2l ,  Al3r  4y2r 4,311414, '  ' '  t

as was displayed in Figure 1.3.1.
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1.3 FINITE AND INFINITE SETS 2I

The argnrmenr thaf tbe set Q of rational 3rrmtrers js countabJe was -first given n 1874
by Georg Cantor (1845-1918). He was the first mathematician to examine the concept of
infinite set in rigorous detail. In contrast to the countability of Q, he also proved the set IR
of real numbers is an uncountable set. (This result will be established in Section 2.5.)

In a series of important papers, Cantor developed an extensive theory of infinite sets and
transfinite arithmetic. Some of his results were quite surprising and generated considerable
confirrrersy among mathematicians of that era. In a L877 Tetter fo his coUleagrc Richard
Dedekind, he wrote, afterproving an unexpected theorem, "f see it, but I do not believe it".

We close this section with one of Cantor's more remarkable theorems.

13.13 Cantor's lheorem If A is any set, then there is no surjection of A onto the set
P(A) of all subsers of A.

hooJ Suppose that g : A + P(A) is a surjection. Since g(a) is a subset of A, either a
belongs to g@) or it does not belong to this set. We let

D : :  {a  e A:  a (  g(a)1.

Since Disasubset of A,if gis asurjection, then D:g(ai forsome ao e A.
We must have either ao e D ot ao e D.fi ao e D, then since D: g(a), we must

have ao e g(a), contrary to the definition of D. Similarly, rf as 4 D, then as # g(ar) so
that ao e D, which is also a contradiction.

Therefore, p cannot be a surjection.

Cantor's Theorem implies that there is an unending progression of larger and larger
sets. In particular, it implies that the collection P(N) of all subsets of the natural numbers
Nis unoounfable.

Exercises for Section 1.3

1. Prove that a noDempty set { is fini1s if and only if there is a bijection from { onto a finite
set Zr.

2. Prove parts (b) and (c) of Theorem 1.3.4.

3. I-et S :: {1,2} and f ;- {a,b, cl.
(a) Determine the number of different injections from S into T.
-G) Determine the number of different sugiections from I onto .S.

4. Exhibit a bijection between N and the set of all odd integers grcarter than 13.

5. Give an explicit definition of the bijection / from N onto Z described in Exanrple 1.3.7(b).

6. Exhibit a bijection between N and a proper subset of itself.

:7. ^PtnvrJrate*at;f ^isrtarumauahL.i+"anAnn]-jr.thae.iqeJrjientinn frnn{.ru*rra;trnumr.ua}rle
set Tr.

8. Give an example of a countable collection of finite sets whose union is not finite.

9. Prove in detail that if ^l and T are denumerable, then .S U f is denumerable.

10. Determine the number of elements in P(S), the collection of all subsets of ,S, for each of the
following sets:
(a) $ ;= {1,2},

(b) $ 1- { I ,2,3},
(c )  5 :=  {1 ,2 ,3 ,4 } .
Be sure 0o include the empty set and the set ,S itself in P(S).

11. Use Mathematical Induction to prove that if the set S has z elements, tben P(S) has 2n elements.

12. Prove that the collection f(N) of allfinite subsets of N is countable.

Q.E.D.


