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19. Prove thatif f : A — B is bijective and g : B — C is bijective, then the composite g o f is a
bijective map of A onto C.

20. Let f: A— Bandg: B — C be functions.
(a) Show thatif g o f is injective, then f is injective.
(b) Show thatif g o f is surjective, then g is surjective.

21. Prove Theorem 1.1.14.

22. Let f, g be functions such that (g o f)(x) = x for all x € D(f) and (f o g)(y) =y for all
y € D(g). Prove that g = f".

Section 1.2 Mathematical Induction

Mathematical Induction is a powerful method of proof that is frequently used to establish
the validity of statements that are given in terms of the natural numbers. Although its utility
is restricted to this rather special context, Mathematical Induction is an indispensable tool
in all branches of mathematics. Since many induction proofs follow the same formal lines
of argument, we will often state only that a result follows from Mathematical Induction
and leave it to the reader to provide the necessary details. In this section, we will state the
principle and give several examples to illustrate how inductive proofs proceed.
We shall assume familiarity with the set of natural numbers:

N:={1,2,3,---},

with the usual arithmetic operations of addition and multiplication, and with the meaning
of a natural number being less than another one. We will also assume the following
fundamental property of N.

1.2.1 Well-Ordering Property of N Every nonempty subset of N has a least element.

A more detailed statement of this property is as follows: If S is a subset of N and if
S # @, then there exists m € S suchthatm < kforallk € S.

On the basis of the Well-Ordering Property, we shall derive a version of the Principle
of Mathematical Induction that is expressed in terms of subsets of N.

1.2.2 Principle of Mathematical Induction Let S be a subset of N that possesses the
two properties:

(1) The number 1 € S.
(2) Foreveryk € N,ifk € S,thenk+1 € S.

Then we have § = N,

Proof. Suppose to the contrary that S # N. Then the set N\§ is not empty, so by the
Well-Ordering Principle it has a least element m. Since 1 € S by hypothesis (1), we know
that m > 1. But this implies that m — 1 is also a natural number. Since m — 1 < m and
since m is the least element in N such that m ¢ S, we conclude thatm — 1 € §.

We now apply hypothesis (2) to the element £ :=m — 1 in S, to infer that k + 1 =
(m — 1) + 1 = m belongs to S. But this statement contradicts the fact that m ¢ S. Since m
was obtained from the assumption that N\ § is not empty, we have obtained a contradiction.
Therefore we must have S = N. QED.
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1.2 MATHEMATICAL INDUCTION 13

The Principle of Mathematical Induction is often set forth in the framework of proper-
Gty U sttamans afuur mata’ anmirs: £° A0« reaningii! suntmant et v < N
then P (n) may be true for some values of » and false for others. For example, if P, (n) is
the statement: “n? = n”, then P, (1) is true while P,(n) is false foralln > 1,n € N. On
the other hand, if P,(n) is the statement: “n” > 17, then P, (1) is false, while P,(n) is true

foralln > 1,n eN.
In this context, the Principle of Mathematical Induction can be formulated as follows.

For eachn € N, let P(n) be a statement about n. Suppose that:

@) PQ) is true.
(2") Foreveryk € N, if P(k) is true, then P(k + 1) is true.

Then P(n) is true for alln € N.

The connection with the preceding version of Mathematical Induction, given in 1.2.2,
is made by letting S := {n € N : P(n) is true}. Then the conditions (1) and (2) of 1.2.2
correspond exactly to the conditions (1') and (2'), respectively. The conclusion that § = N
in 1.2.2 corresponds to the conclusion that P (n) is true for all n € N.

In (2') the assumption “if P (k) is true” is called the induction hypothesis. In estab-
lishing (2'), we are not concerned with the actual truth or falsity of P(k), but only with
the validity of the implication “if P (k), then P(k + 1)”. For example, if we consider the
statements P(n): “n = n + 5”, then (2') is logically correct, for we can simply add 1 to
both sides of P (k) to obtain P (k + 1). However, since the statement P(1): “1 = 6” is false,
we cannot use Mathematical Induction to conclude thatn =n + 5 foralln € N.

It may happen that statements P (n) are false for certain natural numbers but then are
true for all n > n, for some particular n,. The Principle of Mathematical Induction can be
modified to deal with this situation. We will formulate the modified principle, but leave its
verification as an exercise. (See Exercise 12.)

1.2.3 Principle of Mathematical Induction (second version) Letn, € N and let P(n)
be a statement for each natural number n > n,. Suppose that:

be a statement for each natural number n > n,,. Suppose that:

(1) The statement P (n,) is true.
(2) Forallk > n, the truth of P(k) implies the truth of P(k + 1).

Then P (n) is true for alln > n,,.
Sometimes the number 7, in (1) is called the base, since it serves as the starting point,

and the implication in (2), which can be written P(k) = P(k + 1), is called the bridge,
since it connects the case £ to the case k + 1.

The following examples illustrate how Mathematical Induction is used to prove asser-

tions about natural numbers.

1.2.4 Examples (a) Foreachn € N, the sum of the first n natural numbers is given by

1+2+--4+n=inn+1).

To prove this formula, we let S be the set of all n € N for which the formula is true.

We must verify that conditions (1) and (2) of 1.2.2 are satisfied. If n = 1, then we have

!";‘ §_+ 1= 1=1.1-(1+1)sothat1 € §, and (1) is satisfied. Next, we assume that k € S and wish
- l‘lcl:(t:iiz to infer from this assumption that k + 1 € S. Indeed, if k € S, then

QED. 142+ +k=4k(k+1).
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If we add k + 1 to both sides of the assumed equality, we obtain

142+ +k+(k+1)=jkk+ 1)+ (k+1)
=1k + 1)k +2).
Since this is the stated formula for n = k + 1, we conclude that k + 1 € S. Therefore,

condition (2) of 1.2.2 is satisfied. Consequently, by the Principle of Mathematical Induction,
we infer that S = N, so the formula holds for all » € N.

(b) For eachn € N, the sum of the squares of the first n natural numbers is given by
P+22+.4n?=tnn + )20 +1).

To establish this formula, we note that it is true for n = 1, since 12 = % -1.2.3. 1
we assume it is true for k, then adding (k + 1)* to both sides of the assumed formula gives

P+22 4+ + 2+ (e + 1) = b+ D@k + 1) + (k + 1)
= ;(k + 1)(2k* + k + 6k + 6)
= $(k+ (K +2)(2k + 3).

Consequently, the formula is valid for all » € N.

(c) Given two real numbers a and b, we will prove that a — b is a factor of a” — b" for
alln e N.

First we see that the statement is clearly true for n = 1. If we now assume thata — b
is a factor of a* — b*, then

ak+1 . bk+1 — ak+l —abk +ab" _ bk+1
= a(d* — v*) + b @@ - b).

By the induction hypothesis, a — b is a factor of a(a* — b*) and it is plainly a factor of
b*(a — b). Therefore, a — b is a factor of a**! — b**1, and it follows from Mathematical
Induction that a — b is a factor of a" — b" foralln € N.

A variety of divisibility results can be derived from this fact. For example, since
11 — 7 =4, we see that 11" — 7" is divisible by 4 for all n € N.
(d) The inequality 2" > 2n + 1 is false for n = 1, 2, but it is true for n = 3. If we assume
that 2* > 2k + 1, then multiplication by 2 gives, when 2k + 2 > 3, the inequality

21 > 202k +1) =4k +2=2k+ (2k+2) > 2k +3=2(k + 1) + .

Since 2k 4 2 > 3 for all k£ > 1, the bridge is valid for all k¥ > 1 (even though the statement
is false for k = 1, 2). Hence, with the base n, = 3, we can apply Mathematical Induction
to conclude that the inequality holds for all n > 3.
(e) The inequality 2" < (n + 1)! can be established by Mathematical Induction.

We first observe that it is true for n = 1, since 2' =2 =1 + 1. If we assume that
2% < (k + 1), it follows from the fact that 2 < k + 2 that

2 — 2 Kk <2k + N < k+ 2Dk + D! =K +2).
Thus, if the inequality holds for k, then it also holds for k + 1. Therefore, Mathematical
Induction implies that the inequality is true for alln € N.
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1.2 MATHEMATICAL INDUCTION 15

This is the formula for the sum of the terms in a “geometric progression”. It can
be established using Mathematical Induction as follows. First, if n =1, then 1 +r =
(1 = r?)/(1 — r). If we assume the truth of the formula for n = k and add the term r* 1o
both sides, we get (after a little algebra)

1— rk+l + rk+1 _ 1— rk+2
1—r 1-r
which is the formula for n = k + 1. Therefore, Mathematical Induction implies the validity
of the formula for all n € N.

[This result can also be proved without using Mathematical Induction. If we let
s,=1+r -l-r2+----+—r",thc‘:nrs,l =r+r2+...+r"*! sothat

T4r+rf 4wttt =

’

A -r)s,=s,—rs, =1-r""",
If we divide by 1 — r, we obtain the stated formula.]

(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd
conclusions. The reader is invited to find the error in the “proof™ of the following assertion.

Claim: Ifn e N and if the maximum of the natural numbers p and g is n, then p = g.

“Proof” Let S be the subset of N for which the claim is true. Evidently, 1 € S since if
P, q € N and their maximum is 1, then both equal 1 and so p = ¢g. Now assume thatk € S
and that the maximum of p and q is k¥ + 1. Then the maximum of p — 1 and ¢ — 11is k. But
since k € S, then p — 1 = g — 1 and therefore p = ¢. Thus, k + 1 € S, and we conclude
that the assertion is true for all n € N.
(h) There are statements that are true for many natural numbers but that are not true for
all of them.

For example, the formula p(n) := n*> — n + 41 gives a prime number forn = 1,2, - - -,
40. However, p(41) is obviously divisible by 41, so it is not a prime number. 0

Another version of the Principle of Mathematical Induction is sometimes quite useful.
It is called the “ Principle of Strong Induction”, even though it is in fact equivalent to 1.2.2.

1.2.5 Principle of Strong Induction Let S be a subset of N such that

a” 1e€8.
@2") Foreveryk €N, if{1,2,---,k} C S, thenk+1€S.
Then S = N.

We will leave it to the reader to establish the equivalence of 1.2.2 and 1.2.5.

Exercises for Section 1.2

1. Provethat1/1.2+1/2-3+---4+1/n(n+1)=n/(n+1)foralln e N.

2. Provethat 13 +2°+ ... +n° = [In(n + D] foralln e N.

3. Provethat3+11+.--+ (8n—5)=4n’>—nforalln e N.

4. Provethat 12+ 3%+ ...+ 2n—1)> = (4n® —n)/3foralln e N.

5. Provethat 12 —22 4+ 32 + ...+ (=1)""'n? = (=1)"*'n(n + 1)/2 forall n € N.
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. Prove that n® + 5n is divisible by 6 for all n € N.
Prove that 52" — 1 is divisible by 8 for all n € N.
Prove that 5" — 4n — 1 is divisible by 16 foralln € N.
. Prove thatn® + (n + 1)* + (n + 2)* is divisible by 9 for all n € N.

. Conjecture a formula for thesum 1/1-3+1/3-5+--- + 1/(2n — 1)(2n + 1), and prove your
conjecture by using Mathematical Induction.

. Conjecture a formula for the sum of the first » odd natural numbers 1 +3 +---+ (2n — 1),

and prove your formula by using Mathematical Induction.
. Prove the Principle of Mathematical Induction 1.2.3 (second version).
. Prove thatn < 2" foralln € N.
. Provethat2” < n!foralln >4,n e N.
. Provethat2n —3 <2* 2 foralln >5,n € N.
. Find all natural numbers » such that n> < 2". Prove your assertion.

. Find the largest natural number m such that n> — n is divisible by m for all n € N. Prove your
assertion.

. Provethat 1/v/T4+1/V2+---+1//n > Jnforalln e N.

. Let S be a subset of N such that (a) 2f € § for all k € N, and(b)1fkeSandk>2 then
k —1 € S.Prove that § = N.

. Let the numbers x, be defined as follows: x, := 1, x, := 2, and x, ,, := 5 (x,,, +x,) for all
n € N. Use the Pnncnple of Strong Induction (1.2.5) to show that 1 < x, <2foralln e N.

Section 1.3 Finite and Infinite Sets

When we count the elements in a set, we say “one, two, three,. - .”, stopping when we
have exhausted the set. From a mathematical perspective, what we are doing is defining a
bijective mapping between the set and a portion of the set of natural numbers. If the set is
such that the counting does not terminate, such as the set of natural numbers itself, then we
describe the set as being infinite.

The notions of “finite” and “infinite” are extremely primitive, and it is very likely
that the reader has never examined these notions very carefully. In this section we will
define these terms precisely and establish a few basic results and state some other important
results that seem obvious but whose proofs are a bit tricky. These proofs can be found in
Appendix B and can be read later.

1.3.1 Definition (a) The empty set @ is said to have 0 elements.

() IfneN,aset S is said to have n elements if there exists a bijection from the set
N, :={1,2,---,n} onto §.

(c) A set S is said to be finite if it is either empty or it has n elements for some n» € N.

(d) A set S is said to be infinite if it is not finite.

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n
elements if and only if there is a bijection from § onto the set {1, 2, - - -, n}. Also, since the
composition of two bijections is a bijection, we see that a set S; has n elements if and only
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1.3 FINITE AND INFINITE SETS 17

if"there is a bijection from S, onto another set S, that has n elements. Further, a set T} is
finite if and only if there is a bijection from 7) onto another set 7, that is finite.

It is now necessary to establish some basic properties of finite sets to be sure that the
definitions do not lead to conclusions that conflict with our experience of counting. From
the definitions, it is not entirely clear that a finite set might not have n elements for more
than one value of n. Also it is conceivably possible that the set N := {1, 2, 3, - - -} might be

a finite set according to this definition. The reader will be relieved that these possibilities
do not occur, as the next two theorems state. The proofs of these assertions, which use the
fundamental properties of N described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a
unique number in N.

1.3.3 Theorem The set N of natural numbers is an infinite set.
The next result gives some elementary properties of finite and infinite sets.

1.3.4 Theorem (aj IT A 1s a set with m elements and B is a set with n eiements and 1f

ANB =0, then AU B has m + n elements.
(b) IfAisasetwithm € N elements and C C A is a set with 1 element, then A\C is a

set withm — 1 elements.
(¢) IfC is an infinite set and B is a finite set, then C\ B is an infinite set.

Proof. (a) Let f be a bijection of N, onto A, and let g be a bijection of N, onto
B. We define 2 on Nm+n by h(@)):= f@) fori=1,---,m and k(i) :=g(i —m) for

i=m+1,--+,m+n. We leave it as an exercise to show that h is a bijection from N, ,
onto A U B.
The proofs of patts (b) and (c) are left to the reader, see Exercise 2. QED.

It may seem “obvious” that a subset of a finite set is also finite, but the assertion must
be deduced from the definitions. This and the corresponding statement for infinite sets are
established next.

1.3.5 Theorem Suppose that S and T are sets and that T C S.

(@) IfS is a finite set, then T is a finite set.
(b) IfT is an infinite set, then S is an infinite set.

Proof. (a) If T = @, we already know that T is a finite set. Thus we may suppose that
T # @. The proof is by induction on the number of elements in S.
If S has 1 element, then the only nonempty subset T of S must coincide with S, so T

1s a finite set.
Suppose that every nonempty subset of a set with & elements is finite. Now let S be

a set having & + 1 elements (so there exists a bijection f of N, ; onto §), andlet T C S.
If f(k+1) ¢ T, we can consider T to be a subset of §; = S\{f(k + 1)}, which has &
elements by Theorem 1.3.4(b). Hence, by the induction hypothesis, T is a finite set.

On the other hand, if f(k + 1) € T, then T, := T\{f (k + 1)} is a subset of S, . Since
S; has k elements, the induction hypothesis implies that 7} is a finite set. But this implies
that 7' = T, U {f (k + 1)} is also a finite set.
(b) This assertion is the contrapositive of the assertion in (a). (See Appendix A for a
discussion of the cantrapositive.) QED.
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Countable Sets

We now introduce an important type of infinite set.

1.3.6 Definition (a) A set S is said to be denumerable (or countably infinite) if there
exists a bijection of N onto S.

(b) A set S is said to be countable if it is either finite or denumerable.
(c) A set S is said to be uncountable if it is not countable.

From the properties of bijections, it is clear that S is denumerable if and only if there
exists a bijection of § onto N. Also a set S, is denumerable if and only if there exists a
bijection from S, onto a set S, that is denumerable. Further, a set T, is countable if and
only if there exists a bijection from T, onto a set T, that is countable. Finally, an infinite
countable set is denumerable.

1.3.7 Examples (a) ThesetE := {2n : n € N} of even natural numbers is denumerable,
since the mapping f : N — E defined by f(n) := 2n forn € N, is a bijection of N onto E.
Similarly, the set O := {2n — 1 : n € N} of odd natural numbers is denumerable.

(b) The set Z of all integers is denumerable.

To construct a bijection of N onto Z, we map 1 onto 0, we map the set of even natural
numbers onto the set N of positive integers, and we map the set of odd natural numbers
onto the negative integers. This mapping can be displayed by the enumeration:

Z = {Os 1) —1, 2, _2, 3, —3’ .o .}.

(¢) The union of two disjoint denumerable sets is denumerable.
Indeed, if A = {a,, a,,a,,---} and B = {b, b,, b5, - - -}, we can enumerate the ele-
ments of AU B as:

a;,b,a,,b,,a5,b,,---. O
1.3.8 Theorem The setN x N is denumerable.

Informal Proof. Recall that N x N consists of all ordered pairs (m, n), where m, n € N.
We can enumerate these pairs as:

(11 1)’ (11 2)1 (21 1)9 (19 3)9 (25 2)» (37 1)7 (11 4)y M ]
according to increasing sum m -+ n, and increasing m. (See Figure 1.3.1.) QED.

The enumeration just described is an instance of a “diagonal procedure”, since we
move along diagonals that each contain finitely many terms as illustrated in Figure 1.3.1.
While this argument is satisfying in that it shows exactly what the bijectionof N x N —» N
should do, it is not a “formal proof™, since it doesn’t define this bijection precisely. (See
Appendix B for a more formal proof.)

As we have remarked, the construction of an explicit bijection between sets is often
complicated. The next two results are useful in establishing the countability of sets, since
they do not involve showing that certain mappings are bijections. The first result may seem
intuitively clear, but its proof is rather technical; it will be given in Appendix B.
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(1 2) (2,2)\ (3,2) \ (4, 2)
1)

a1, M&

Figure 131 Theset Nx N

1.3.9 Theorem Suppose that S and T are sets and that T < S.

(a) IfS is a countable set, then T is a countable set.
(b) IfT is an uncountable set, then S is an uncountable set.

1318 Theorem The ollowing stabtomeonts are equivalent:
(a) S is a countable set.

(b) There exists a surjection of N onto S.

(¢) There exists an injection of § into N.

Proof. (a) = (b) If S is finite, there exists a bijection  of some set N, onto S and we
define H on N by
_Jhk) for k=1,---,n,
B = {h(n) for k>n.

Then H is a surjection of N onto S.

If S is denumerable, there exists a bijection H of N onto S, which is also a surjection
of N onto S.
(b) = (¢) If H is a surjection of N onto S, we define H, : § — N by letting H, (s) be
the least element in the set H7(s) := {n € N: H(n) = s}. To see that H, is an injection
of Sinto N, note thatif s,z € Sand n, := H,(s) = H,(¢), thens = H(n,) =1.
(© = (@ If H, is an injection of § into N, then it is a bijection of S onto H,(S) S N.
By Theorem 1.3.9(a), H, (S) is countable, whence the set S is countable. QED.

L3212 Theoram e sat @ afal casinng’ mimhas & dannmanbls

Proof. The idea of the proof is to observe that the set Q* of positive rational numbers is
contained in the enumeration:

N
N
15

’ .T, %; 2 1° %5""
which is another “diagonal mapping” (see Figure 1.3.2). However, this mapping is not an
injection, since the different fractions % and 43 represent the same rational number.

To proceed more formally, note that since N x N is countable (by Theorem 1.3.8),
it follows from Theorem 1.3.10(b) that there exists a surjection f of N onto N x N. If

——
[STE
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Figure 1.3.2 The set Q*

g : N x N — Qt is the mapping that sends the ordered pair (m, n) into the rational num-
ber having a representation m/n, then g is a surjection onto Q™. Therefore, the composition
g o f is a surjection of N ontc Q*, and Theorem 1.3.10 implies that Q is a countable set.

Similarly, the set Q~ of all negative rational numbers is countable. It follows as in
Example 1.3.7(b) that the set Q = Q™ U {0} UQ" is countable. Since Q contains N, it
must be a denumerable set. QED.

The next result is concerned with unions of sets. In view of Theorem 1.3.10, we need
not be worried about possible overlapping of the sets. Also, we do not have to construct a
bijection.

1.3.12 Theorem If A, is acountable set for eachm € N, then the union A := |J,,_, A,
is countable.

Proof. Foreachm € N, let ¢, be a surjection of N onto A,,. We define ¢ : N x N—-> A
by
¥(m,n) == ¢, n).
We claim that y is a surjection. Indeed, if a € A, then there exists a least m € N such that
a € A, , whence there exists a least n € N such thata = ¢, (n). Therefore, a = ¥ (m, n).
Since N x N is countable, it follows from Theorem 1.3.10 that there exists a surjection

f :N— N x N whence y o f is a surjection of N onto A. Now apply Theorem 1.3.10
again to conclude that A is countable. QED.

Remark A less formal (but more intuitive) way to see the truth of Theorem 1.3.12 is to
enumerate the elements of A, m € N, as:

A, ={a), a0y, -}
A, = {ay,ay, 0y, },

A; = {ay), a5, 053, -},
We then enumerate this array using the “diagonal procedure”:

Q135 Q135 11 8135 Q31 G315 Bygy *

as was displayed in Figure 1.3.1.
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The argument that the set QO of rational numbers is conntable was first given in 1874
by Georg Cantor (1845-1918). He was the first mathematician to examine the concept of
infinite set in rigorous detail. In contrast to the countability of Q, he also proved the set R
of real numbers is an uncountable set. (This result will be established in Section 2.5.)

In a series of important papers, Cantor developed an extensive theory of infinite sets and
transfinite arithmetic. Some of his results were quite surprising and generated considerable
controversy among mathematiciaas of that era. In a 1877 letter to his colleague Richard
Dedekind, he wrote, after proving an unexpected theorem, “I see it, but I do not believe it”.

‘We close this section with one of Cantor’s more remarkable theorems.

1.3.13 Cantor’s Theorem If A is any set, then there is no surjection of A onto the set
P(A) of all subsets of A.

Proof. Suppose that ¢ : A — P(A) is a surjection. Since ¢(a) is a subset of A, either a
belongs to ¢(a) or it does not belong to this set. We let

D:={aeA:aé¢yp)l

Since D is a subset of A, if ¢ is a surjection, then D = ¢(a,) for some a, € A.
We must have either a, € D or a, ¢ D. If a; € D, then since D = ¢(a,), we must

have a, € ¢(a,), contrary to the definition of D. Similarly, if @, ¢ D, then a, ¢ ¢(a,) so

that a, € D, which is also a contradiction.
Therefore, ¢ cannot be a surjection.

Cantor’s Theorem implies that there is an unending progression of larger and larger
sets. In particular, it implies that the collection P(N) of all subsets of the natural numbers

N is uncountable.

» the rational num-
r, the composition
& a countable set.
k. It follows as in
» Q contains N, it

Q.ED.

m 1.3.10, we need
sve to construct a

Q.ED.

- A= U:t°=l Am
Exercises for Section 1.3

py :NxN—-> A o . NN .
1. Prove that a2 nonempty set T, is finite if and only if there is a bijection from T, onto a finite
set T,.
2. Prove parts (b) and (c) of Theorem 1.3.4.
3. LetS:={1,2}and T := {a, b, c}.
(a) Determine the number of different injections from § into 7'.
(b) Determine the number of different surjections from T onto S.

t m € N such that
©, a = Y (m, n).

X1Sts a surjection
 Theorem 1.3.10 4. Exhibit a bijection between N and the set of all odd integers greater than 13.
QED. 5. Give an explicit definition of the bijection f from N onto Z described in Example 1.3.7(b).
6. Exhibit a bijection between N and a proper subset of itself.
A BowedhatacetT dedennmerhladfandenluiftherdeaRjisction from.T sontnadenimarahle

rem 1.3.12 is to set 7.

8. Give an example of a countable collection of finite sets whose union is not finite.
9. Prove in detail that if S and T are denumerable, then S U T is denumerable.

10. Determine the number of elements in P(S), the collection of all subsets of S, for each of the

following sets:
@ §:={1,2}
®) §:=1{1,2,3},
() §:={1,2,3,4}.
Be sure to include the empty set and the set § itself in P(S).
11. Use Mathematical Induction to prove that if the set S has » elements, then P(S) has 2” elements.

12. Prove that the collection F(N) of all finite subsets of N is countable.




