Application of Linear Algebra to Differential Equations
 Segment 5: More Examples

Carl C. Cowen

IUPUI

Math 35300, April 26, 2014
(C) All rights reserved

OUTLINE

- Segment 1. Introduction; the equation $Y^{\prime}=A Y$
- Segment 2. The matrix exponential
- Segment 3. Spectral Mapping Theorem for matrix exponential
- Segment 4. Some easy examples
- Segment 5. More examples
- Segment 6. Complication: A not diagonalizable
- Segment 7. An example with A not diagonalizable

References: Section 8.3, Section 10.2
Problems: For Discussion May 1: page 328: 1, 2, 3, 4, 5 page 392: 1, 2, 4

Again we want to use the results of Segments 2 and 3:
Theorem: If A is an $n \times n$ matrix and C is a vector in \mathbb{R}^{n} or \mathbb{C}^{n}, then the function $Y(t)=e^{t A} C$ is the unique solution

$$
\text { of the initial value problem: } \quad Y^{\prime}=A Y \quad \text { and } \quad Y(0)=C
$$

and also:

Theorem:

If A is an $n \times n$ matrix and $v_{1}, v_{2}, \cdots, v_{n}$ is a basis for \mathbb{C}^{n} consisting of eigenvectors for A associated with the eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$,
then the unique solution of the initial value problem: $Y^{\prime}=A Y, Y(0)=C$

$$
\begin{aligned}
& \text { is } Y(t)=\alpha_{1} e^{\lambda_{1} t} v_{1}+\alpha_{2} e^{\lambda_{2} t} v_{2}+\cdots+\alpha_{n} e^{\lambda_{n} t} v_{n} \\
& \text { where } C=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
\end{aligned}
$$

Example:

Solve the initial value problem: $\left\{\begin{array}{l}y_{1}^{\prime}=2 y_{1}+y_{2} \\ y_{2}^{\prime}=-y_{1}+2 y_{2}\end{array}\right.$ and $\left\{\begin{array}{l}y_{1}(0)=3 \\ y_{2}(0)=0\end{array}\right.$

Example:

Solve the initial value problem: $\left\{\begin{array}{l}y_{1}^{\prime}=2 y_{1}+y_{2} \\ y_{2}^{\prime}=-y_{1}+2 y_{2}\end{array}\right.$ and $\left\{\begin{array}{l}y_{1}(0)=3 \\ y_{2}(0)=0\end{array}\right.$
We can rewrite this as $Y^{\prime}=F Y$ and $Y(0)=R$ by choosing

$$
Y=\binom{y_{1}}{y_{2}} \quad F=\left(\begin{array}{rr}
2 & 1 \\
-1 & 2
\end{array}\right) \text { and } R=\binom{3}{0}
$$

As before, we will use Matlab to do the calculations.

Example (cont'd):

From the Matlab computations, the solution of $Y^{\prime}=F Y, Y(0)=R$ is

$$
Y(t)=c_{1} e^{\lambda_{1} t} w_{1}+c_{2} e^{\lambda_{2} t} w_{2}
$$

where $\quad c_{1}=2.1213, c_{2}=2.1213$

$$
\begin{aligned}
& w_{1}=\binom{0.7071}{0.7071 i}, w_{2}=\binom{0.7071}{-0.7071 i}, \\
& \text { and } \lambda_{1}=2+i, \text { and } \lambda_{2}=2-i
\end{aligned}
$$

Example (cont'd):

From the Matlab computations, the solution of $Y^{\prime}=F Y, Y(0)=R$ is

$$
Y(t)=c_{1} e^{\lambda_{1} t} w_{1}+c_{2} e^{\lambda_{2} t} w_{2}
$$

where $\quad c_{1}=2.1213, c_{2}=2.1213$

$$
\begin{aligned}
& w_{1}=\binom{0.7071}{0.7071 i}, w_{2}=\binom{0.7071}{-0.7071 i}, \\
& \text { and } \lambda_{1}=2+i, \text { and } \lambda_{2}=2-i
\end{aligned}
$$

Since λ_{1} and λ_{2} are different, the eigenvalues of F are distinct and F is diagonalizable.

Example (cont'd):

From the Matlab computations, the solution of $Y^{\prime}=F Y, Y(0)=R$ is

$$
Y(t)=c_{1} e^{\lambda_{1} t} w_{1}+c_{2} e^{\lambda_{2} t} w_{2}
$$

where $\quad c_{1}=2.1213, c_{2}=2.1213$

$$
\begin{aligned}
& w_{1}=\binom{0.7071}{0.7071 i}, w_{2}=\binom{0.7071}{-0.7071 i}, \\
& \text { and } \lambda_{1}=2+i, \text { and } \lambda_{2}=2-i
\end{aligned}
$$

Since λ_{1} and λ_{2} are different, the eigenvalues of F are distinct and F is diagonalizable. In particular, this means we get the solution exactly as before:

$$
Y(t)=c_{1} e^{(2+i) t} w_{1}+c_{2} e^{(2-i) t} w_{2}=e^{(2+i) t}\binom{1.5}{1.5 i}+e^{(2-i) t}\binom{1.5}{-1.5 i}
$$

Example (cont'd):

On the other hand, our IVP: $\left\{\begin{array}{l}y_{1}^{\prime}=2 y_{1}+y_{2} \\ y_{2}^{\prime}=-y_{1}+2 y_{2}\end{array}\right.$ and $\left\{\begin{array}{l}y_{1}(0)=3 \\ y_{2}(0)=0\end{array}\right.$ is real
and our answer is complex(!): $\quad Y(t)=e^{(2+i) t}\binom{1.5}{1.5 i}+e^{(2-i) t}\binom{1.5}{-1.5 i}$,

Example (cont'd):

On the other hand, our IVP: $\left\{\begin{array}{l}y_{1}^{\prime}=2 y_{1}+y_{2} \\ y_{2}^{\prime}=-y_{1}+2 y_{2}\end{array}\right.$ and $\left\{\begin{array}{l}y_{1}(0)=3 \\ y_{2}(0)=0\end{array}\right.$ is real
and our answer is complex(!): $\quad Y(t)=e^{(2+i) t}\binom{1.5}{1.5 i}+e^{(2-i) t}\binom{1.5}{-1.5 i}$,
but we can check that it is a solution of the IVP, which has a unique solution!

Example (cont'd):
On the other hand, our IVP: $\left\{\begin{array}{l}y_{1}^{\prime}=2 y_{1}+y_{2} \\ y_{2}^{\prime}=-y_{1}+2 y_{2}\end{array}\right.$ and $\left\{\begin{array}{l}y_{1}(0)=3 \\ y_{2}(0)=0\end{array}\right.$ is real
and our answer is complex (!): $\quad Y(t)=e^{(2+i) t}\binom{1.5}{1.5 i}+e^{(2-i) t}\binom{1.5}{-1.5 i}$,
but we can check that it is a solution of the IVP, which has a unique solution!

To understand this situation, we must recall facts about the complex exponential function, and in particular, Euler's formula and its consquences!

Example (cont'd):

To understand this situation, we must recall facts about the complex exponential function, and in particular, Euler's formula and its consquences!

From calculus, we know $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ for all real numbers x, and that the series converges absolutely.

Example (cont'd):

To understand this situation, we must recall facts about the complex exponential function, and in particular, Euler's formula and its consquences!

From calculus, we know $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ for all real numbers x, and that the series converges absolutely.

This means that the exponential function can be extended to the complex plane by $e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots$

Example (cont'd):

To understand this situation, we must recall facts about the complex exponential function, and in particular, Euler's formula and its consquences!

From calculus, we know $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ for all real numbers x, and that the series converges absolutely.

This means that the exponential function can be extended to the complex plane by $e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots$

We recall that the exponential function satisfies the equation $e^{a+b}=e^{a} e^{b}$ for a and b real numbers,

Example (cont'd):

To understand this situation, we must recall facts about the complex exponential function, and in particular, Euler's formula and its consquences!

From calculus, we know $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ for all real numbers x, and that the series converges absolutely.

This means that the exponential function can be extended to the complex plane by $e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots$

We recall that the exponential function satisfies the equation $e^{a+b}=e^{a} e^{b}$ for a and b real numbers, and it is easy to prove that it also holds for a and b complex numbers.

Example (cont'd):

To understand this situation, we must recall facts about the complex exponential function, and in particular, Euler's formula and its consquences!

From calculus, we know $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ for all real numbers x, and that the series converges absolutely.

This means that the exponential function can be extended to the complex plane by $e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots$

We recall that the exponential function satisfies the equation $e^{a+b}=e^{a} e^{b}$ for a and b real numbers, and it is easy to prove that it also holds for a and b complex numbers.
(BUT we will see it does NOT hold for $n \times n$ matrices for $n \geq 2!$!)

Example (cont'd):

If a and b are real numbers $e^{a+b i}=e^{a} e^{i b}$, and we understand e^{a}.

Example (cont'd):
If a and b are real numbers $e^{a+b i}=e^{a} e^{i b}$, and we understand e^{a}.
Euler's formula is: For b real (using radians), $e^{i b}=\cos (b)+i \sin (b)$

Example (cont'd):

If a and b are real numbers $e^{a+b i}=e^{a} e^{i b}$, and we understand e^{a}.
Euler's formula is: For b real (using radians), $e^{i b}=\cos (b)+i \sin (b)$
Applying this to the complex exponential function in the Example, we see $e^{(2+i) t}=e^{2 t} e^{i t}=e^{2 t}(\cos (t)+i \sin (t))$ and $e^{(2-i) t}=e^{2 t}(\cos (t)-i \sin (t))$ and

Example (cont'd):

If a and b are real numbers $e^{a+b i}=e^{a} e^{i b}$, and we understand e^{a}.
Euler's formula is: For b real (using radians), $e^{i b}=\cos (b)+i \sin (b)$

Applying this to the complex exponential function in the Example, we see $e^{(2+i) t}=e^{2 t} e^{i t}=e^{2 t}(\cos (t)+i \sin (t))$ and $e^{(2-i) t}=e^{2 t}(\cos (t)-i \sin (t))$ and

$$
\begin{aligned}
Y(t) & =e^{(2+i) t}\binom{1.5}{1.5 i}+e^{(2-i) t}\binom{1.5}{-1.5 i} \\
& =1.5 e^{2 t}\left[\binom{(\cos (t)+i \sin (t))}{(\cos (t)+i \sin (t)) i}+\binom{(\cos (t)-i \sin (t))}{-(\cos (t)-i \sin (t)) i}\right] \\
& =\binom{3 e^{2 t} \cos (t)}{-3 e^{2 t} \sin (t)} \text { or, } y_{1}(t)=3 e^{2 t} \cos (t) \text { and } y_{2}(t)=-3 e^{2 t} \sin (t)
\end{aligned}
$$

Another Example:

Solve initial value problem: $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-1$

Another Example:

Solve initial value problem: $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-1$
The most obvious difference between this and earlier examples is that this is 1 linear equation of order 2 instead of a system of linear equations.

Another Example:

Solve initial value problem: $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-1$
The most obvious difference between this and earlier examples is that this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:

Another Example:

Solve initial value problem: $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-1$
The most obvious difference between this and earlier examples is that this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:
Let $y_{1}(t)=y(t)$, so that $y_{1}^{\prime}=y^{\prime}$.

Another Example:

Solve initial value problem: $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-1$
The most obvious difference between this and earlier examples is that
this is 1 linear equation of order $\mathcal{2}$ instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:
Let $y_{1}(t)=y(t)$, so that $y_{1}^{\prime}=y^{\prime}$. Also, let $y_{2}(t)=y_{1}^{\prime}(t)$, so $y_{2}^{\prime}=y^{\prime \prime}$.

Another Example:

Solve initial value problem: $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-1$

The most obvious difference between this and earlier examples is that
this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:
Let $y_{1}(t)=y(t)$, so that $y_{1}^{\prime}=y^{\prime}$. Also, let $y_{2}(t)=y_{1}^{\prime}(t)$, so $y_{2}^{\prime}=y^{\prime \prime}$.

$$
\text { Since } y^{\prime \prime}+5 y^{\prime}+6 y=0, \text { we see } y_{2}^{\prime}=y^{\prime \prime}=-5 y^{\prime}-6 y=-6 y_{1}-5 y_{2}
$$

Another Example:

Solve initial value problem: $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-1$
The most obvious difference between this and earlier examples is that
this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:
Let $y_{1}(t)=y(t)$, so that $y_{1}^{\prime}=y^{\prime}$. Also, let $y_{2}(t)=y_{1}^{\prime}(t)$, so $y_{2}^{\prime}=y^{\prime \prime}$.
Since $y^{\prime \prime}+5 y^{\prime}+6 y=0$, we see $y_{2}^{\prime}=y^{\prime \prime}=-5 y^{\prime}-6 y=-6 y_{1}-5 y_{2}$.
The resulting IVP is: $\left\{\begin{array}{l}y_{1}^{\prime}=\quad y_{2} \\ y_{2}^{\prime}=-6 y_{1}-5 y_{2}\end{array}\right.$ and $\left\{\begin{array}{c}y_{1}(0)=1 \\ y_{2}(0)=-1\end{array}\right.$

Another Example:

Solve initial value problem: $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-1$
The most obvious difference between this and earlier examples is that
this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:
Let $y_{1}(t)=y(t)$, so that $y_{1}^{\prime}=y^{\prime}$. Also, let $y_{2}(t)=y_{1}^{\prime}(t)$, so $y_{2}^{\prime}=y^{\prime \prime}$.
Since $y^{\prime \prime}+5 y^{\prime}+6 y=0$, we see $y_{2}^{\prime}=y^{\prime \prime}=-5 y^{\prime}-6 y=-6 y_{1}-5 y_{2}$.
The resulting IVP is: $\left\{\begin{array}{l}y_{1}^{\prime}=\quad y_{2} \\ y_{2}^{\prime}=-6 y_{1}-5 y_{2}\end{array}\right.$ and $\left\{\begin{array}{c}y_{1}(0)=1 \\ y_{2}(0)=-1\end{array}\right.$
We solve this system in the usual way, and interpret it as above!

Another Example:

Solve the IVP: $\left\{\begin{array}{l}y_{1}^{\prime}=r \\ y_{2}^{\prime}=-6 y_{1}-5 y_{2}\end{array}\right.$ and $\left\{\begin{array}{c}y_{1}(0)=1 \\ y_{2}(0)=-1\end{array}\right.$
We can rewrite this as $Y^{\prime}=G Y$ and $Y(0)=S$ by choosing

$$
Y=\binom{y_{1}}{y_{2}} \quad G=\left(\begin{array}{rr}
0 & 1 \\
-6 & -5
\end{array}\right) \quad \text { and } \quad S=\binom{1}{-1}
$$

Solution of $Y^{\prime}=G Y, Y(0)=S$ is $Y(t)=d_{1} e^{\lambda_{1} t} x_{1}+d_{2} e^{\lambda_{2} t} x_{2}$
where $\quad d_{1}=4.4721, \quad d_{2}=3.1623, \quad \lambda_{1}=-2, \quad \lambda_{2}=-3$,

$$
x_{1}=\binom{0.4472}{-0.8944} \text {, and } x_{2}=\binom{-0.3162}{0.9487}
$$

Another Example:

In other words, the function
$Y(t)=d_{1} e^{-2 t} x_{1}+d_{2} e^{-3 t} x_{2}=e^{-2 t}\binom{2}{-4}+e^{-3 t}\binom{-1}{3}$
is the solution of the IVP: $\left\{\begin{array}{l}y_{1}^{\prime}=\quad y_{2} \\ y_{2}^{\prime}=-6 y_{1}-5 y_{2}\end{array}\right.$ and $\left\{\begin{array}{c}y_{1}(0)=1 \\ y_{2}(0)=-1\end{array}\right.$

Another Example:

In other words, the function
$Y(t)=d_{1} e^{-2 t} x_{1}+d_{2} e^{-3 t} x_{2}=e^{-2 t}\binom{2}{-4}+e^{-3 t}\binom{-1}{3}$
is the solution of the IVP: $\left\{\begin{array}{l}y_{1}^{\prime}=\quad y_{2} \\ y_{2}^{\prime}=-6 y_{1}-5 y_{2}\end{array}\right.$ and $\left\{\begin{array}{c}y_{1}(0)=1 \\ y_{2}(0)=-1\end{array}\right.$
In particular, relating this to the original IVP, this means

$$
y(t)=y_{1}(t)=2 e^{-2 t}-e^{-3 t}
$$

is the solution of the initial value problem:

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0 \text { with } y(0)=1 \text { and } y^{\prime}(0)=-1
$$

This is the end of the Fifth Segment.

In the next segment, we tackle initial value problems
for which the coefficient matrix is non-diagonalizable.

