Application of Linear Algebra

 to Differential Equations
Segment 3: Spectral Mapping Theorem for the Matrix Exponential

Carl C. Cowen

IUPUI

Math 35300, April 26, 2014
(C) All rights reserved

OUTLINE

- Segment 1. Introduction; the equation $Y^{\prime}=A Y$
- Segment 2. The matrix exponential
- Segment 3. Spectral Mapping Thm for matrix exponential
- Segment 4. Some easy examples
- Segment 5. More examples
- Segment 6. Complication: A not diagonalizable
- Segment 7. An example with A not diagonalizable

References: Section 8.3, Section 10.2
Problems: For Discussion May 1: page 328: 1, 2, 3, 4, 5 page 392: 1, 2, 4

Definition (Matrix Exponential Function):

If A is $n \times n$ matrix, the matrix exponential function $e^{t A}$ is defined by series

$$
e^{t A}=I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots
$$

Definition (Matrix Exponential Function):

If A is $n \times n$ matrix, the matrix exponential function $e^{t A}$ is defined by series

$$
e^{t A}=I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots
$$

In the last segment, we saw that this makes sense, that is, that the series converges for all numbers t and all matrices A.

Definition (Matrix Exponential Function):

If A is $n \times n$ matrix, the matrix exponential function $e^{t A}$ is defined by series

$$
e^{t A}=I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots
$$

In the last segment, we saw that this makes sense, that is, that the series converges for all numbers t and all matrices A.

While the infinite series representation is correct, it is not usually very useful, because we can't actually compute $e^{t A} v$ for most matrices A and vectors v.

Definition (Matrix Exponential Function):

If A is $n \times n$ matrix, the matrix exponential function $e^{t A}$ is defined by series

$$
e^{t A}=I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots
$$

In the last segment, we saw that this makes sense, that is, that the series converges for all numbers t and all matrices A.

While the infinite series representation is correct, it is not usually very useful, because we can't actually compute $e^{t A} v$ for most matrices A and vectors v.

In this segment, we wish to use the Spectral Mapping Theorem to be able to effectively compute $e^{t A} v$ for any number t, any matrix A, and any vector v.

Example:

If D is a diagonal matrix, then $e^{t D}$ is the diagonal matrix whose diagonal entries are the exponentials of the diagonal entries of D.

Example:

If D is a diagonal matrix, then $e^{t D}$ is the diagonal matrix whose diagonal entries are the exponentials of the diagonal entries of D.

Indeed, suppose

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right)
$$

Example:

If D is a diagonal matrix, then $e^{t D}$ is the diagonal matrix whose diagonal entries are the exponentials of the diagonal entries of D.

Indeed, suppose

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right)
$$

Then $e^{t D}=I+t D+\frac{t^{2}}{2!} D^{2}+\cdots$

$$
\begin{aligned}
& \text { For } D=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & & 0 \\
\vdots & & \cdots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right) \text { we have } \\
& D^{2}=\left(\begin{array}{cccc}
d_{1}^{2} & 0 & \cdots & 0 \\
0 & d_{2}^{2} & & 0 \\
\vdots & & \cdots & \vdots \\
0 & 0 & \cdots & d_{n}^{2}
\end{array}\right) \text { and } D^{3}=\left(\begin{array}{cccc}
d_{1}^{3} & 0 & \cdots & 0 \\
0 & d_{2}^{3} & & 0 \\
\vdots & & \cdots & \vdots \\
0 & 0 & \cdots & d_{n}^{3}
\end{array}\right) \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } D=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right) \quad \text { this means } \\
& e^{t D}=I+t D+\cdots=\left(\begin{array}{ccc}
1 & \cdots & 0 \\
& \ddots & \\
0 & \cdots & 1
\end{array}\right)+t\left(\begin{array}{ccc}
d_{1} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & d_{n}
\end{array}\right)+\frac{t^{2}}{2!}\left(\begin{array}{lll}
d_{1}^{2} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & d_{n}^{2}
\end{array}\right)+\cdots \\
& =\left(\begin{array}{ccc}
1 & \cdots & 0 \\
& \ddots & \\
0 & \cdots & 1
\end{array}\right)+\left(\begin{array}{ccc}
t d_{1} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & t d_{n}
\end{array}\right)+\left(\begin{array}{ccc}
\frac{\left(t d_{1}\right)^{2}}{2!} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & \frac{\left(t d_{n}\right)^{2}}{2!}
\end{array}\right)+\cdots
\end{aligned}
$$

For D diagonal with diagonal entries d_{j}, this means

$$
\begin{aligned}
& e^{t D}=I+t D+\frac{(t D)^{2}}{2!}+\cdots= \\
& =\left(\begin{array}{ccc}
1+t d_{1}+\frac{\left(t d_{1}\right)^{2}}{2!}+\cdots & \cdots & 0 \\
& \ddots & \\
0 & & \cdots \\
& & 1+t d_{n}+\frac{\left(t d_{n}\right)^{2}}{2!}+\cdots
\end{array}\right) \\
& =\left(\begin{array}{cccc}
e^{t d_{1}} & 0 & \cdots & 0 \\
0 & e^{t d_{2}} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & e^{t d_{n}}
\end{array}\right)
\end{aligned}
$$

However, most matrices are much harder to exponentiate!
For example if $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$, then $A^{2}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 3 \\ 0 & 4\end{array}\right)$
$A^{3}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 0 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 7 \\ 0 & 8\end{array}\right), \quad A^{4}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)\left(\begin{array}{ll}1 & 7 \\ 0 & 8\end{array}\right)=\left(\begin{array}{ll}1 & 15 \\ 0 & 16\end{array}\right)$
and
$e^{t A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+t\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)+\frac{t^{2}}{2!}\left(\begin{array}{ll}1 & 3 \\ 0 & 4\end{array}\right)+\frac{t^{3}}{3!}\left(\begin{array}{ll}1 & 7 \\ 0 & 8\end{array}\right)+\cdots=\left(\begin{array}{cc}e^{t} & ? ? \\ 0 & e^{2 t}\end{array}\right)$

Theorem:

If A is an $n \times n$ matrix with eigenvector v with eigenvalue λ, then v is an eigenvector of the matrix $e^{t A}$ with eigenvalue $e^{\lambda t}$.

Theorem:

If A is an $n \times n$ matrix with eigenvector v with eigenvalue λ, then v is an eigenvector of the matrix $e^{t A}$ with eigenvalue $e^{\lambda t}$.

Proof: We have $e^{t A} v=\left(I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots\right) v$

Theorem:

If A is an $n \times n$ matrix with eigenvector v with eigenvalue λ, then v is an eigenvector of the matrix $e^{t A}$ with eigenvalue $e^{\lambda t}$.

Proof: We have $e^{t A} v=\left(I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots\right) v$

$$
=I v+t A v+\frac{t^{2}}{2!} A^{2} v+\frac{t^{3}}{3!} A^{3} v+\cdots
$$

Theorem:

If A is an $n \times n$ matrix with eigenvector v with eigenvalue λ, then v is an eigenvector of the matrix $e^{t A}$ with eigenvalue $e^{\lambda t}$.

Proof: We have $e^{t A} v=\left(I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots\right) v$
$=I v+t A v+\frac{t^{2}}{2!} A^{2} v+\frac{t^{3}}{3!} A^{3} v+\cdots$
$=v+\lambda t v+\frac{(\lambda t)^{2}}{2!} v+\frac{(\lambda t)^{3}}{3!} v+\cdots$

Theorem:

If A is an $n \times n$ matrix with eigenvector v with eigenvalue λ, then v is an eigenvector of the matrix $e^{t A}$ with eigenvalue $e^{\lambda t}$.

Proof: We have $e^{t A} v=\left(I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots\right) v$

$$
=I v+t A v+\frac{t^{2}}{2!} A^{2} v+\frac{t^{3}}{3!} A^{3} v+\cdots
$$

$$
=v+\lambda t v+\frac{(\lambda t)^{2}}{2!} v+\frac{(\lambda t)^{3}}{3!} v+\cdots
$$

$$
=\left(1+\lambda t+\frac{(\lambda t)^{2}}{2!}+\frac{(\lambda t)^{3}}{3!}+\cdots\right) v
$$

Theorem:

If A is an $n \times n$ matrix with eigenvector v with eigenvalue λ, then v is an eigenvector of the matrix $e^{t A}$ with eigenvalue $e^{\lambda t}$.

Proof: We have $e^{t A} v=\left(I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\cdots\right) v$

$$
=I v+t A v+\frac{t^{2}}{2!} A^{2} v+\frac{t^{3}}{3!} A^{3} v+\cdots
$$

$$
=v+\lambda t v+\frac{(\lambda t)^{2}}{2!} v+\frac{(\lambda t)^{3}}{3!} v+\cdots
$$

$$
=\left(1+\lambda t+\frac{(\lambda t)^{2}}{2!}+\frac{(\lambda t)^{3}}{3!}+\cdots\right) v
$$

$$
=e^{\lambda t} v
$$

Theorem:

If A is an $n \times n$ matrix with eigenvector v with eigenvalue λ, then v is an eigenvector of the matrix $e^{t A}$ with eigenvalue $e^{\lambda t}$.

Corollary:

Let A be an $n \times n$ matrix with eigenvectors $v_{1}, v_{2}, \cdots, v_{k}$ corresponding to the eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$.

$$
\begin{aligned}
& \text { If } C=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k} \\
& \qquad \text { then } e^{t A} C=\alpha_{1} e^{\lambda_{1} t} v_{1}+\alpha_{2} e^{\lambda_{2} t} v_{2}+\cdots+\alpha_{k} e^{\lambda_{k} t} v_{k}
\end{aligned}
$$

Theorem:

If A is an $n \times n$ matrix with eigenvector v with eigenvalue λ, then v is an eigenvector of the matrix $e^{t A}$ with eigenvalue $e^{\lambda t}$.

Corollary:

Let A be an $n \times n$ matrix with eigenvectors $v_{1}, v_{2}, \cdots, v_{k}$ corresponding to the eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}$.

$$
\begin{aligned}
& \text { If } C=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k} \\
& \qquad \text { then } e^{t A} C=\alpha_{1} e^{\lambda_{1} t} v_{1}+\alpha_{2} e^{\lambda_{2} t} v_{2}+\cdots+\alpha_{k} e^{\lambda_{k} t} v_{k}
\end{aligned}
$$

In particular, if A is diagonalizable, there is a basis for \mathbb{C}^{n} consisting of eigenvectors of A and this corollary gives the solution of every initial value problem for the differential equation $Y^{\prime}=A Y$.

This is the end of the Third Segment.

In the next segment, we will begin with this result and use it to solve some initial value problems.

