Application of Linear Algebra to Differential Equations

Segment 2: The Matrix Exponential

Carl C. Cowen
IUPUI

Math 35300, April 26, 2014
(c) All rights reserved

OUTLINE

- Segment 1. Introduction; the equation $Y^{\prime}=A Y$
- Segment 2. The matrix exponential
- Segment 3. Spectral Mapping Theorem for the matrix exponential
- Segment 4. Some easy examples
- Segment 5. More examples
- Segment 6. Complication: A not diagonalizable
- Segment 7. An example with A not diagonalizable

References: Section 8.3, Section 10.2
Problems: For Discussion May 1: page 328: 1, 2, 3, 4, 5 page 392: 1, 2, 4

To deal with $Y^{\prime}=A Y$ in a way analogous to dealing with $y^{\prime}=a y$, we need to develop e^{B} for an $n \times n$ matrix B in analogy to e^{b} for a number b.

To deal with $Y^{\prime}=A Y$ in a way analogous to dealing with $y^{\prime}=a y$, we need to develop e^{B} for an $n \times n$ matrix B in analogy to e^{b} for a number b.

From calculus, we know $e^{b}=1+b+\frac{b^{2}}{2!}+\frac{b^{3}}{3!}+\frac{b^{4}}{4!}+\cdots$

To deal with $Y^{\prime}=A Y$ in a way analogous to dealing with $y^{\prime}=a y$, we need to develop e^{B} for an $n \times n$ matrix B in analogy to e^{b} for a number b.

From calculus, we know $e^{b}=1+b+\frac{b^{2}}{2!}+\frac{b^{3}}{3!}+\frac{b^{4}}{4!}+\cdots$

Definition (Matrix Exponential):

If B is an $n \times n$ matrix, the matrix e^{B} is defined by the series

$$
e^{B}=I+B+\frac{1}{2!} B^{2}+\frac{1}{3!} B^{3}+\frac{1}{4!} B^{4}+\cdots
$$

To deal with $Y^{\prime}=A Y$ in a way analogous to dealing with $y^{\prime}=a y$, we need to develop e^{B} for an $n \times n$ matrix B in analogy to e^{b} for a number b.

From calculus, we know $e^{b}=1+b+\frac{b^{2}}{2!}+\frac{b^{3}}{3!}+\frac{b^{4}}{4!}+\cdots$

Definition (Matrix Exponential):

If B is an $n \times n$ matrix, the matrix e^{B} is defined by the series

$$
e^{B}=I+B+\frac{1}{2!} B^{2}+\frac{1}{3!} B^{3}+\frac{1}{4!} B^{4}+\cdots
$$

We need to show that this definition makes sense, that is, that the series converges, and learn about the properties of the matrix exponential.

Theorem:

Let A be an $n \times n$ matrix and let C be a vector in \mathbb{R}^{n} or \mathbb{C}^{n}. Then

- The series for $e^{t A}$ converges for all numbers t and all matrices A

Theorem:

Let A be an $n \times n$ matrix and let C be a vector in \mathbb{R}^{n} or \mathbb{C}^{n}. Then

- The series for $e^{t A}$ converges for all numbers t and all matrices A
- For all t, and any $A, \quad\left\|e^{t A}\right\| \leq e^{\|A\| \| t \mid}$

Theorem:

Let A be an $n \times n$ matrix and let C be a vector in \mathbb{R}^{n} or \mathbb{C}^{n}. Then

- The series for $e^{t A}$ converges for all numbers t and all matrices A
- For all t, and any $A, \quad\left\|e^{t A}\right\| \leq e^{\|A\| \| t \mid}$
- The function $Y(t)=e^{t A} C$ has derivative $Y^{\prime}(t)=A e^{t A} C$

Theorem:

Let A be an $n \times n$ matrix and let C be a vector in \mathbb{R}^{n} or \mathbb{C}^{n}. Then

- The series for $e^{t A}$ converges for all numbers t and all matrices A
- For all t, and any $A, \quad\left\|e^{t A}\right\| \leq e^{\|A\| \| t \mid}$
- The function $Y(t)=e^{t A} C$ has derivative $Y^{\prime}(t)=A e^{t A} C$
- The function $Y(t)=e^{t A} C$ satisfies the initial condition $Y(0)=C$

Theorem:

Let A be an $n \times n$ matrix and let C be a vector in \mathbb{R}^{n} or \mathbb{C}^{n}. Then

- The series for $e^{t A}$ converges for all numbers t and all matrices A
- For all t, and any $A, \quad\left\|e^{t A}\right\| \leq e^{\|A\| \| t \mid}$
- The function $Y(t)=e^{t A} C$ has derivative $Y^{\prime}(t)=A e^{t A} C$
- The function $Y(t)=e^{t A} C$ satisfies the initial condition $Y(0)=C$
- The function $Y(t)=e^{t A} C$ is the only solution of the initial value problem:

$$
Y^{\prime}=A Y \quad \text { and } \quad Y(0)=C
$$

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges.

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges.
The series for $e^{t A}$ is $I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots$

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges.
The series for $e^{t A}$ is $I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots$
so the series to check absolute convergence is

$$
\|I\|+\|t A\|+\left\|\frac{(t A)^{2}}{2!}\right\|+\left\|\frac{(t A)^{3}}{3!}\right\|+\left\|\frac{(t A)^{4}}{4!}\right\|+\cdots
$$

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges.
The series for $e^{t A}$ is $I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots$
so the series to check absolute convergence is

$$
\begin{aligned}
& \|I\|+\|t A\|+\left\|\frac{(t A)^{2}}{2!}\right\|+\left\|\frac{(t A)^{3}}{3!}\right\|+\left\|\frac{(t A)^{4}}{4!}\right\|+\cdots \\
& \quad \leq\|I\|+|t|\|A\|+\frac{|t|^{2}\|A\|^{2}}{2!}+\frac{|t|^{3}\|A\|^{3}}{3!}+\frac{|t|^{4}\|A\|^{4}}{4!}+\cdots
\end{aligned}
$$

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges.
The series for $e^{t A}$ is $I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots$
so the series to check absolute convergence is

$$
\begin{aligned}
& \|I\|+\|t A\|+\left\|\frac{(t A)^{2}}{2!}\right\|+\left\|\frac{(t A)^{3}}{3!}\right\|+\left\|\frac{(t A)^{4}}{4!}\right\|+\cdots \\
& \leq\|I\|+|t|\|A\|+\frac{|t|^{2}\|A\|^{2}}{2!}+\frac{|t|^{3}\|A\|^{3}}{3!}+\frac{|t|^{4}\|A\|^{4}}{4!}+\cdots \\
& =1+|t|\|A\|+\frac{(|t|\|A\|)^{2}}{2!}+\frac{(|t|\|A\|)^{3}}{3!}+\frac{(|t|\|A\|)^{4}}{4!}+\cdots
\end{aligned}
$$

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges.
The series for $e^{t A}$ is $I+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\frac{(t A)^{4}}{4!}+\cdots$
so the series to check absolute convergence is

$$
\begin{aligned}
& \|I\|+\|t A\|+\left\|\frac{(t A)^{2}}{2!}\right\|+\left\|\frac{(t A)^{3}}{3!}\right\|+\left\|\frac{(t A)^{4}}{4!}\right\|+\cdots \\
& \leq\|I\|+|t|\|A\|+\frac{|t|^{2}\|A\|^{2}}{2!}+\frac{|t|^{3}\|A\|^{3}}{3!}+\frac{|t|^{4}\|A\|^{4}}{4!}+\cdots \\
& \quad=1+|t|\|A\|+\frac{(|t|\|A\|)^{2}}{2!}+\frac{(|t|\|A\|)^{3}}{3!}+\frac{(|t|\|A\|)^{4}}{4!}+\cdots
\end{aligned}
$$

which converges to $e^{|t||A| \mid}$

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges. The series

$$
\begin{aligned}
\|I\|+ & \|t A\|+\left\|\frac{(t A)^{2}}{2!}\right\|+\left\|\frac{(t A)^{3}}{3!}\right\|+\left\|\frac{(t A)^{4}}{4!}\right\|+\cdots \\
& =1+|t|\|A\|+\frac{(|t|\|A\|)^{2}}{2!}+\frac{(|t|\|A\|)^{3}}{3!}+\frac{(|t|\|A\|)^{4}}{4!}+\cdots=e^{|t|\|A\|}
\end{aligned}
$$

converges, so the series for $e^{t A}$ is absolutely convergent, therefore, convergent.

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges. The series

$$
\begin{aligned}
\|I\|+ & \|t A\|+\left\|\frac{(t A)^{2}}{2!}\right\|+\left\|\frac{(t A)^{3}}{3!}\right\|+\left\|\frac{(t A)^{4}}{4!}\right\|+\cdots \\
& =1+|t|\|A\|+\frac{(|t|\|A\|)^{2}}{2!}+\frac{(|t|\|A\|)^{3}}{3!}+\frac{(|t|\|A\|)^{4}}{4!}+\cdots=e^{|t|\|A\|}
\end{aligned}
$$

converges, so the series for $e^{t A}$ is absolutely convergent, therefore, convergent. Moreover, the estimate above shows that $\left\|e^{t A}\right\|$ is no more than $e^{|t|\|A\|}$ and the series converges absolutely and uniformly for $-M \leq t \leq M$ for each positive number M.

Proof: Theorem 5.10 (page 233) says that if a series converges absolutely, it converges. The series

$$
\begin{aligned}
\|I\|+ & \|t A\|+\left\|\frac{(t A)^{2}}{2!}\right\|+\left\|\frac{(t A)^{3}}{3!}\right\|+\left\|\frac{(t A)^{4}}{4!}\right\|+\cdots \\
& =1+|t|\|A\|+\frac{(|t|\|A\|)^{2}}{2!}+\frac{(|t|\|A\|)^{3}}{3!}+\frac{(|t|\|A\|)^{4}}{4!}+\cdots=e^{|t|\|A\|}
\end{aligned}
$$

converges, so the series for $e^{t A}$ is absolutely convergent, therefore, convergent.
Moreover, the estimate above shows that $\left\|e^{t A}\right\|$ is no more than $e^{|t|\|A\|}$ and the series converges absolutely and uniformly for $-M \leq t \leq M$ for each positive number M. Thus, the series can be differentiated term by term and

$$
\begin{aligned}
\frac{d}{d t} e^{t A} & =0+A+\frac{2 t A^{2}}{2!}+\frac{3 t^{2} A^{3}}{3!}+\frac{4 t^{3} A^{4}}{4!}+\cdots \\
& =A\left(I+\frac{t A}{1!}+\frac{t^{2} A^{2}}{2!}+\frac{t^{3} A^{3}}{3!}+\cdots\right)=A e^{t A}
\end{aligned}
$$

so $Y^{\prime}(t)=A e^{t A} C=A Y(t)$ and $Y(0)=e^{0} C=C$.

This is the end of the Second Segment.

In the next segment, we will see how to use the Spectral Mapping Theorem to avoid the infinite series in this segment.

The goal is to be able to calculate $e^{t A} v$ for any number t, any matrix A, and any vector v.

