Application of Linear Algebra to Differential Equations

Segment 1: Introduction

Carl C. Cowen

IUPUI

Math 35300, April 26, 2014
(C) All rights reserved

OUTLINE

- Segment 1. Introduction; the equation $Y^{\prime}=A Y$
- Segment 2. The matrix exponential
- Segment 3. Spectral Mapping Theorem for the matrix exponential
- Segment 4. Some easy examples
- Segment 5. More examples
- Segment 6. Complication: A not diagonalizable
- Segment 7. An example with A not diagonalizable

References: Section 8.3, Section 10.2
Problems: For Discussion May 1: page 328: 1, 2, 3, 4, 5 page 392: 1, 2, 4

Differential Equation: an equation involving an unknown function, and its derivatives

Differential Equation: an equation involving an unknown function, and its derivatives

Solving a differential equation means finding all functions
that satisfy the equation

An object falling satisfies $\frac{d^{2} x}{d t^{2}}=-g$
where $x=x(t)$ is height of object at time t, g is gravitational constant

An object falling satisfies $\frac{d^{2} x}{d t^{2}}=-g$
where $x=x(t)$ is height of object at time t, g is gravitational constant

A population with unrestricted resources satisfies $\frac{d y}{d t}=a y$ where $y=y(t)$ is population at time t, a is growth constant

An object falling satisfies $\frac{d^{2} x}{d t^{2}}=-g$
where $x=x(t)$ is height of object at time t, g is gravitational constant
Solution: integrate twice to get $x(t)=-\frac{g}{2} t^{2}+v_{0} t+x_{0}$
where v_{0} is the initial velocity and x_{0} is the initial height.

A population with unrestricted resources satisfies $\frac{d y}{d t}=a y$
where $y=y(t)$ is population at time t, a is growth constant

An object falling satisfies $\frac{d^{2} x}{d t^{2}}=-g$
where $x=x(t)$ is height of object at time t, g is gravitational constant
Solution: integrate twice to get $x(t)=-\frac{g}{2} t^{2}+v_{0} t+x_{0}$
where v_{0} is the initial velocity and x_{0} is the initial height.

A population with unrestricted resources satisfies $\frac{d y}{d t}=a y$ where $y=y(t)$ is population at time t, a is growth constant

Solution: Rewrite as $\frac{1}{y} \frac{d y}{d t}=a$ to get $\ln (y)=a t+c$ or $y(t)=C e^{a t}$ where $C=e^{c}$

The differential equation $2 y^{\prime \prime}-5 y^{\prime}+3 y=0$ is called linear
because no powers, roots or other functions of y occur in the equation,

The differential equation $2 y^{\prime \prime}-5 y^{\prime}+3 y=0$ is called linear
because no powers, roots or other functions of y occur in the equation, or better, because if $y(t)=f(t)$ and $y(t)=g(t)$ both solve the equation, so will $f(t)+g(t)$ and so will $\alpha f(t)$ for any constant α

The differential equation $2 y^{\prime \prime}-5 y^{\prime}+3 y=0$ is called linear
because no powers, roots or other functions of y occur in the equation, or better, because if $y(t)=f(t)$ and $y(t)=g(t)$ both solve the equation, so will $f(t)+g(t)$ and so will $\alpha f(t)$ for any constant α

Because 2, -5 , and 3 are numbers rather than non-trivial functions of t, the equation $2 y^{\prime \prime}-5 y^{\prime}+3 y=0$ is said to have constant coefficients.

The differential equation $2 y^{\prime \prime}-5 y^{\prime}+3 y=0$ is called linear
because no powers, roots or other functions of y occur in the equation, or better, because if $y(t)=f(t)$ and $y(t)=g(t)$ both solve the equation, so will $f(t)+g(t)$ and so will $\alpha f(t)$ for any constant α

Because 2, -5 , and 3 are numbers rather than non-trivial functions of t, the equation $2 y^{\prime \prime}-5 y^{\prime}+3 y=0$ is said to have constant coefficients.

Second derivative of unknown function y occurs, but no higher derivative, so the equation is said to be a second order equation.

Consider systems of linear differential equations with constant coefficients: collection of equations with several unknown functions and their derivatives in which each equation is linear and all the coefficients are constants.

Consider systems of linear differential equations with constant coefficients: collection of equations with several unknown functions and their derivatives in which each equation is linear and all the coefficients are constants.

For example, let's look at the system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{1}-y_{2} \\ y_{2}^{\prime}=2 y_{1}+4 y_{2}\end{array}\right.$

Write $Y=Y(t)=\binom{y_{1}(t)}{y_{2}(t)}=\binom{y_{1}}{y_{2}}$

Write $Y=Y(t)=\binom{y_{1}(t)}{y_{2}(t)}=\binom{y_{1}}{y_{2}}$

$$
\text { so } \quad Y^{\prime}=Y^{\prime}(t)=\binom{y_{1}^{\prime}(t)}{y_{2}^{\prime}(t)}=\binom{y_{1}^{\prime}}{y_{2}^{\prime}}
$$

Write $Y=Y(t)=\binom{y_{1}(t)}{y_{2}(t)}=\binom{y_{1}}{y_{2}}$

$$
\text { so } \quad Y^{\prime}=Y^{\prime}(t)=\binom{y_{1}^{\prime}(t)}{y_{2}^{\prime}(t)}=\binom{y_{1}^{\prime}}{y_{2}^{\prime}}
$$

Then the system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{1}-y_{2} \\ y_{2}^{\prime}=2 y_{1}+4 y_{2}\end{array} \quad\right.$ becomes

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\binom{y_{1}-y_{2}}{2 y_{1}+4 y_{2}}
$$

Write $Y=Y(t)=\binom{y_{1}(t)}{y_{2}(t)}=\binom{y_{1}}{y_{2}}$

$$
\text { so } \quad Y^{\prime}=Y^{\prime}(t)=\binom{y_{1}^{\prime}(t)}{y_{2}^{\prime}(t)}=\binom{y_{1}^{\prime}}{y_{2}^{\prime}}
$$

Then the system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{1}-y_{2} \\ y_{2}^{\prime}=2 y_{1}+4 y_{2}\end{array} \quad\right.$ becomes

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\binom{y_{1}-y_{2}}{2 y_{1}+4 y_{2}}=\left(\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right)\binom{y_{1}}{y_{2}}
$$

Write $Y=Y(t)=\binom{y_{1}(t)}{y_{2}(t)}=\binom{y_{1}}{y_{2}}$

$$
\text { so } \quad Y^{\prime}=Y^{\prime}(t)=\binom{y_{1}^{\prime}(t)}{y_{2}^{\prime}(t)}=\binom{y_{1}^{\prime}}{y_{2}^{\prime}}
$$

Then the system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{1}-y_{2} \\ y_{2}^{\prime}=2 y_{1}+4 y_{2}\end{array} \quad\right.$ becomes
$\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\binom{y_{1}-y_{2}}{2 y_{1}+4 y_{2}}=\left(\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right)\binom{y_{1}}{y_{2}}$
That is, the system becomes $Y^{\prime}=A Y \quad$ where $\quad A=\left(\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right)$
$Y^{\prime}=A Y$ is a linear system so the following is not surprising:

Theorem (Principle of Superposition):

If A is an $n \times n$ matrix with U and V solutions of the system $Y^{\prime}=A Y$, then for any numbers α, β, the function $W=\alpha U+\beta V$ is also a solution.
$Y^{\prime}=A Y$ is a linear system so the following is not surprising:

Theorem (Principle of Superposition):
If A is an $n \times n$ matrix with U and V solutions of the system $Y^{\prime}=A Y$, then for any numbers α, β, the function $W=\alpha U+\beta V$ is also a solution.

Proof: If $W(t)=\alpha U(t)+\beta V(t)$, then $W^{\prime}(t)=\alpha U^{\prime}(t)+\beta V^{\prime}(t)$.
Since U and V are solutions of $Y^{\prime}=A Y$, we have $U^{\prime}=A U$ and $V^{\prime}=A V$,
$Y^{\prime}=A Y$ is a linear system so the following is not surprising:

Theorem (Principle of Superposition):

If A is an $n \times n$ matrix with U and V solutions of the system $Y^{\prime}=A Y$,
then for any numbers α, β, the function $W=\alpha U+\beta V$ is also a solution.

Proof: If $W(t)=\alpha U(t)+\beta V(t)$, then $W^{\prime}(t)=\alpha U^{\prime}(t)+\beta V^{\prime}(t)$.
Since U and V are solutions of $Y^{\prime}=A Y$, we have $U^{\prime}=A U$ and $V^{\prime}=A V$,

$$
\text { so } \alpha U^{\prime}=\alpha A U=A(\alpha U) \text { and } \beta V^{\prime}=\beta A V=A(\beta V) \text {. }
$$

$Y^{\prime}=A Y$ is a linear system so the following is not surprising:

Theorem (Principle of Superposition):

If A is an $n \times n$ matrix with U and V solutions of the system $Y^{\prime}=A Y$, then for any numbers α, β, the function $W=\alpha U+\beta V$ is also a solution.

Proof: If $W(t)=\alpha U(t)+\beta V(t)$, then $W^{\prime}(t)=\alpha U^{\prime}(t)+\beta V^{\prime}(t)$.
Since U and V are solutions of $Y^{\prime}=A Y$, we have $U^{\prime}=A U$ and $V^{\prime}=A V$,

$$
\begin{gathered}
\text { so } \alpha U^{\prime}=\alpha A U=A(\alpha U) \text { and } \beta V^{\prime}=\beta A V=A(\beta V) \text {. This means } \\
\qquad W^{\prime}=\alpha U^{\prime}+\beta V^{\prime}=A(\alpha U)+A(\beta V)=A(\alpha U+\beta V)=A W
\end{gathered}
$$

which is the conclusion.

This is the end of the First Segment.

In the next segment, we will investigate the matrix exponential so that we can deal with the equation $Y^{\prime}=A Y$ in a way analogous to the equation $y^{\prime}=a y$.

