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Solving a differential equation means finding all functions

that satisfy the equation
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2
t2 + v0t + x0

where v0 is the initial velocity and x0 is the initial height.
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An object falling satisfies
d2x

dt2
= −g

where x = x(t) is height of object at time t, g is gravitational constant

Solution: integrate twice to get x(t) = −g
2
t2 + v0t + x0

where v0 is the initial velocity and x0 is the initial height.

A population with unrestricted resources satisfies
dy

dt
= ay

where y = y(t) is population at time t, a is growth constant

Solution: Rewrite as
1

y

dy

dt
= a to get ln(y) = at + c or y(t) = Ceat

where C = ec
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The differential equation 2y′′ − 5y′ + 3y = 0 is called linear

because no powers, roots or other functions of y occur in the equation,

or better, because if y(t) = f (t) and y(t) = g(t) both solve the equation,

so will f (t) + g(t) and so will αf (t) for any constant α

Because 2, −5, and 3 are numbers rather than non-trivial functions of t,

the equation 2y′′ − 5y′ + 3y = 0 is said to have constant coefficients.

Second derivative of unknown function y occurs, but no higher derivative,

so the equation is said to be a second order equation.



Consider systems of linear differential equations with constant coefficients:

collection of equations with several unknown functions and their derivatives

in which each equation is linear and all the coefficients are constants.



Consider systems of linear differential equations with constant coefficients:

collection of equations with several unknown functions and their derivatives

in which each equation is linear and all the coefficients are constants.

For example, let’s look at the system

 y′1 = y1 − y2

y′2 = 2y1 + 4y2
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That is, the system becomes Y ′ = AY where A =

 1 −1

2 4





Y ′ = AY is a linear system so the following is not surprising:

Theorem (Principle of Superposition):

If A is an n× n matrix with U and V solutions of the system Y ′ = AY ,

then for any numbers α, β, the function W = αU + βV is also a solution.
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Y ′ = AY is a linear system so the following is not surprising:

Theorem (Principle of Superposition):

If A is an n× n matrix with U and V solutions of the system Y ′ = AY ,

then for any numbers α, β, the function W = αU + βV is also a solution.

Proof: If W (t) = αU(t) + βV (t), then W ′(t) = αU ′(t) + βV ′(t).

Since U and V are solutions of Y ′ = AY , we have U ′ = AU and V ′ = AV ,

so αU ′ = αAU = A(αU) and βV ′ = βAV = A(βV ). This means

W ′ = αU ′ + βV ′ = A(αU) + A(βV ) = A(αU + βV ) = AW

which is the conclusion.



This is the end of the First Segment.

In the next segment, we will investigate the matrix exponential so that we can

deal with the equation Y ′ = AY in a way analogous to the equation y′ = ay.


