Professor Carl Cowen Math 44500 Spring 11

‘A’ LIST PROBLEMS

Solutions to problems from this list may be handed in at any time before 5:00pm on
May 6. The problems will be read and either accepted as correct or returned for rewriting and
resubmission. Only one of these problems will be counted for credit but this problem will be
worth the same number of points as two regular homework assignments. In order to receive
an ‘A’ or ‘A+’ for the course, you must have one of the ‘A’ List problems accepted as correct.

1. (Construction of R)

Peano (1889) and Dedekind (1888) gave a careful construction of the integers from the
axioms for set theory. In an ‘A’ List problem for Math 44400, a construction of the rational
numbers Q from the integers was outlined. We will take the rational numbers, Q, and their
properties as given. In particular, we assume as given the usual operations and the usual
notation for the rational numbers as quotients of integers, as modified by the convention
that two different quotients of integers, for example 1/3 and 4/12, are considered “=".
The goal of this problem is, using the rational numbers and their properties, to construct
the set R, define the operations of ‘addition’ and ‘multiplication’ for elements of R, define
the set P of ‘positive’ elements of R, and prove that R with these operations and the
distinguished subset P is an ordered field which we can recognize as being the (usual) real
numbers.

An equivalence relation on a set X' is a binary relation ~ that satisfies (i) for every x in
X, x ~ z (reflexivity), (ii) for z and y in X', x ~ y implies y ~ x (symmetry), and (iii) for
z,y,and z in X, x ~ y and y ~ z implies  ~ z (transitivity). A equivalence relation
on a set can be used to define equivalence classes: For x in X, the equivalence class of x,
denoted [z], is the subset of X

2] ={y e X:y~a}

From the properties of an equivalence relation, we see that [z] = [y] if and only if x ~ y.
An equivalence relation therefore allows us to break up a set into disjoint pieces, the
equivalence classes. An easy example is modular arithmetic: we say integers m and n
are equivalent modulo 2 if m — n is divisible by 2. This equivalence relation breaks the
integers into two disjoint subsets usually called the ‘even integers’ (the equivalence class
of 2) and the ‘odd integers’ (the equivalence class of 1).

The Construction:
Let Y be the set of Cauchy sequences of rational numbers

Y =A{(q1,92,93,---) : ¢; € Q for each j and the sequence (g;) is Cauchy }
where we say a sequence (g;) is Cauchy if for each rational number p > 0, there is N in N
so that |¢j — qx| < p for all j > N and k > N.

We define a binary relation ~ on ) by the following: for Cauchy sequences of rational
numbers (pi) and (g;), we write (px) ~ (¢;) when the sequence p1,q1,p2, g2, p3,q3,- - is
also Cauchy. In addition, we identify the rational number ¢ with the equivalence class of
the Cauchy sequence q,q,q,q,--- and we let ¢ = [(¢,q, ¢, --)]. The set R, of real numbers,
is the set of equivalence classes of the sequer;ces in )Y with the operations defined below.



1. (Continued)

(a) Show that ~, defined above, is an equivalence relation on ).

(b) Show that if p and ¢ are distinct rational numbers, then the equivalence classes p
and ¢ are different. This shows that the map from Q into R given by ¢ — ¢ is
injective. Of course, after we are finished with this problem and again think of the
real numbers as a ‘natural’ object without any mysteries, this injective map will be
considered the identification of Q as a subset of R.

(c) Suppose (px) and (g;) are in Y with (pg) ~ (g;). Show that (—py) and (—g;) are in
Y and that (—pi) ~ (—g;). This means that letting ©[(g;)] be [(—g;)] defines a real
number and cannot cause confusion; we say “©[(q;)] = [(—qg;)] is well-defined.”

(d) Suppose (pk), (Py); (¢;), and (q}) are in ¥ with (px) ~ (p}) and (g;) ~ (q}). Show
that (pr + qx) and (p), + ¢;,) are in Y and (py + qx) ~ (p}, + q.)- Conclude that, for
(pr) and (gx) in Y, letting [(pr)] @ [(qr)] = [(pr + qx)] is well-defined.

(e) Show that if p, ¢, and r are rational numbers with p 4+ ¢ = r, then as real numbers,
pBg=r.

(f) Suppose that (pg), (qx), and (rx) are Cauchy sequences of rational numbers in ) so
that o = [(pr)], @ = [(qx)], and p = [(7x)] are real numbers. Prove that c®6 = 0@ o
and that (c®0)®p = o® (6 p), that is, that real number addition is commutative
and associative.

(g) Show that if o = [(px)] is a real number, then 0 &0 = 0@ 0 = o, which means that
0 is the additive identity for the real numbers.

(h) Show that if o = [(px)] is a real number and ©o = [(—pg)] as above, then
o® (60) = (60) @ o = 0, which means that ©o defined as above is the additive
inverse for the real number o.

(i) Suppose (pk), (P)), (¢;), and (g;) are in Y with (p) ~ (p,) and (g;) ~ (¢;). Show
that (prgr) and (plq;,) are in Y and (prqr) ~ (plq;). Conclude that, for (p) and
(gk) in Y, letting [(px)] © [(x)] = [(Prax)] is well-defined.

(j) Show that if p, ¢, and r are rational numbers with pg = r, then as real numbers,
pOg=r.

(k) Suppose that (pg), (¢x), and () are Cauchy sequences of rational numbers in ) so
that o = [(pr)], @ = [(qx)], and p = [(rk)] are real numbers. Prove that c©6 = 0@ 0,
that (c ©0) ©p=0© (0 ©®p), and that 0 © (0§ B p) =0 © 0 & 0 © p, that is, that
real number multiplication is commutative and associative and that multiplication
distributes over addition.

(1) Show that if o = [(pg)] is a real number, then 0 ©®1 =1 ® ¢ = ¢, which means that
1 is the multiplicative identity for the real numbers.

(m) Suppose (pg) is a Cauchy sequence of non-zero rational numbers. Find a condition
on the sequence that guarantees that the sequence (ry), where rp = 1/py for each
positive integer k, is also a Cauchy sequence. (Of course, you must express your
condition in language that only uses the rational numbers!)

(n) Show that a Cauchy sequence (gx) with [(gx)] = 0 does not satisfy the condition you

found in part (m), but that if (¢x) is a Cauchy sequence of rational numbers with
[(gr)] # 0, then there is a Cauchy sequence (py) which does satisfy your condition

and [(qx)] = [(pr)]-



1. (Continued)

(o) Let (pg) and (p},) be Cauchy sequences of rational numbers that satisfy the condition
you found in part (m) and suppose [(pr)] = [(p})]. Show that if (r;) and (r},) are
the sequences for which r, = 1/p; and r), = 1/pj, for each positive integer k, then
[(ri)] = [(r}.)]. This, together with parts (m) and (n), means that for [(gz)] # 0,
letting (1/[(qx)]) = [(1/pk)], where (pi) is a Cauchy sequence of rational numbers
satisfying your condition in part (m) and [(gx)] = [(pr)], is well defined.

(p) Suppose o # 0 and (1/0) is defined as in part (o). Show that o ® (1/0) = 1, so that
(1/0) is the multiplicative inverse of o.

Note! In parts (a) through (p), you have shown that with these definitions, the set
of equivalence classes of rational numbers that we are tentatively calling the set of

real numbers is a field satisfying the axioms (Al), (A2), (A3), (A4), (M1), (M2), (M3),
(M4), and (D) on page 23 of the text.

(q) Choose a set P of real numbers that contains 1 and deserves to be called the positive
real numbers. Prove that your choice for P satisfies the order axioms (O1), (02),
and (O3) (or (i), (ii), and (iii)) on page 25 of the text. (Of course, you may use
these order properties for the rational numbers in your work.)

The ordering of R! Of course we order the real numbers using P by writing o > p if

0@ (©p) is in P, and this makes R into an ordered field. Similarly, we define the absolute
value |- | by |o| =0 if 0 isin P, |o| = 6o if 0 is in —P, and |o| = 0 if 0 = 0. Following
the ideas in Chapter 2 of the text, we define distance, neighborhoods, upper bounds,
suprema, etc., and prove the theorems that depend on the order ideas and their extensions.

(r) Prove The Completeness Property of R (page 37 of the text) which, you will re-
call was an assumption about the real numbers as we used them in Math 44400.
Your proof, in connection with the construction of R completed above, justifies this
assumption about the real numbers. (Note that your proof of the supremum exist-
ing in R will involve your construction of a Cauchy sequence of rational numbers,
or at least a proof of the existence of such a sequence, because the rationals are
NOT complete and such equivalence classes are what we have created as “the real
numbers”.)

2. Let F be the family of anchored continuous real valued functions

F ={f: f is continuous on [0,1] and f(0) = f(1) =0}

If f is a function in F and ¢ is a number, ¢ is called a flat of f if there is a number «

with 0 < a < a+ ¢ < 1 and such that f(a) = f(a + ¢). We call £ a ubiquitous flat if ¢

is a flat of every f in F. Clearly £ = 0 and ¢ = 1 are ubiquitous flats. In addition, the

reading problem from the recent Math 44400 Final Exam showed (in an equivalent form)
that £ = 1/2 is a ubiquitous flat. Find all ubiquitous flats (and prove your answer), that

is, for each number r with 0 < r < 1 decide if r is or is not a ubiquitous flat and give a

proof or an example to justify your claim.



3. This exercise develops the Cantor set and the Cantor function. More properly, this is
the Cantor middle-thirds set because one description of this set involves removal of the
‘middle thirds’ of intervals. Sets that are topologically the same can be achieved by
removing middle fourths or middle fifths, or even middle portions of varying lengths, but
doing so yields different sets.

In a discussion of decimal expansions, we could just as easily have used a positive
integer (the base) different than 10. Most often encountered are the binary expansions in
which the base is 2 and the digits used are 0 and 1. In this exercise, we will use ternary
expansions, that is, using base 3 and the digits 0, 1, and 2. If r is a rational number of
the form p/3* where p < 3, we write

3% = (.dldgdg"-dk)g when % :%+%+"'+%

This is similar to writing 3/8 = 375/10% = .375 or 3/8 = 0/2 + 1/22 + 1/23 = (.011),.

Just as in decimal expansions, when the number is irrational or a rational that is

not a fraction with a denominator 10¥ for some integer k, we write infinite decimals,

we can write finite or infinite ternary expansions for any real number. For example,

66/81 = 2/3 +1/9 + 1/81 = (.2101)3 and 1/4 = (.0202020202---)3. Notice that

1/3 = (.1000- - -)3 = (.02222- - -)3 and indeed, we also have 66/81 = (.21002222---)3. So

we see that the ternary expansion of 1/4 is unique, but every rational number of the form

p/3F has two ternary expansions, one finite and one infinite.

Definition The Cantor set, C, is the set

for d; €{0,1,2},j=1,---,k

C = {x €]0,1] : = has a ternary expansion whose digits consist only of 0’s and 2’s}

Thus, 0 = (.000-- )3, 1 = (.222---)3, 2/3 = (.200- )3, 1/3 = (.0222---)3 and 1/4 are
all in C, but 66/81 = (.210100---)3 = (.210022---)3, 1/2 = (.1111---)3, and 1/v/2 =
(.2010021 - - -)3 are not.

(a) Show that the Cantor set C is a closed set.

(b) Suppose z is not in the Cantor set. Let zy = sup{y € C : y < x} and let x, =
inf{y € C : y > x}. Show that x, and x, are in C. Since z is not in the Cantor
set, the ternary expansion of z, say x = (.dydadsdy - +)3, has a 1 in it that cannot
be eliminated by using a different ternary expansion for z and we suppose dy is the
first digit in the expansion of x that is 1. What are the ternary expansions of x;
and x, that consist only of 0’s and 2’s?

(c) Show that the set {y : y € C} is an open set and that it is dense in [0, 1], that is, if
x is in [0, 1], every neighborhood of x contains a point of [0, 1] that is not in C.

Definition The Cantor function, ¢, is the function mapping [0, 1] into [0, 1] defined as
follows: If z is in the Cantor set and x = (.didadsdy - --)3 where each d; is either 0 or
2, then define ¢(x) = (.b1babsbs - - -)2 where b; = d;/2. If = is not in the Cantor set, let

p(x) = p(zr).

(d) Using your answer to part (b) above, show that if x is not in the Cantor set, then
o(z) = p(x,) also.

(e) Show that the Cantor function, ¢, is continuous and increasing on [0, 1].

(Problem continued on next page!)



3. (Continued)
(f) Show that the Cantor function maps [0, 1] onto [0, 1] and use this to show that the
Cantor set, C, is an uncountable set.

1
(g) Show that the Cantor function ¢ is Riemann integrable and find / o(t) dt.
0

(h) At which points, x, of [0,1] is ¢ differentiable? At these points, find ¢'(x).

4. Statement: Let a < b be given. For every countable set D with D C [a,b], there is a
function f:[a,b] = R such that D = {x € [a,b] : f is discontinuous at x}.

Either prove that the Statement is true or, if not, find a countable set D with D C [0, 1]
that cannot be the set of discontinuities of any function defined on [0, 1].

5. For each positive integer n, let f, be an increasing function that maps [0, c0) into itself.
Show that there is an increasing function g that maps [0, c0) into itself so that

lim =0
T—y00 g(x)

for each each positive integer n.

6. Let ¢ be a continuous, strictly increasing function mapping [0, 1] into itself.

(a) Show that the hypothesis ‘p(1) = 1 is the only fixed point of ¢ in [0, 1]’ is equivalent
to the hypothesis ‘p(z) > x for 0 <z < 1.

(b) Prove: If ¢(1) =1 is the only fixed point of ¢ in [0, 1], then there is a continuous,
strictly increasing function ¢ mapping [0, 1] into itself such that 1) o ¥ = .

Hint: Let ag = 0, let a1 = ¢(ap), and for each positive integer k, let a1 = ¢(ay). Let

bop =0, let by = a1/2, and for each positive integer k, let by 2 = ¢(b;). The sequences a;

and b, may help break the problem into pieces that can be considered separately.



