April 29: For Discussion!

For the following problems, unless otherwise specified, assume all vectors are in \mathbb{C}^n for some positive integer, n, and the inner product, $\langle \cdot, \cdot \rangle$, is the Euclidean inner product.

110. Let $\mathcal{B} = \{w_1, w_2, \cdots, w_n\}$ be an orthonormal set of vectors in \mathbb{C}^n .

 $u = \langle w_1, u \rangle w_1 + \langle w_2, u \rangle w_2 + \dots + \langle w_n, u \rangle w_n$

(a) Prove that \mathcal{B} is basis for \mathbb{C}^n , that is, an orthonormal basis, and that for any u in \mathbb{C}^n

(b) Prove: for
$$u$$
 and v in \mathbb{C}^n , $\langle u, v \rangle = \sum_{j=1}^n \overline{\langle w_j, u \rangle} \langle w_j, v \rangle = \sum_{j=1}^n \langle u, w_j \rangle \langle w_j, v \rangle$
and therefore that $||u||^2 = \sum_{j=1}^n |\langle w_j, u \rangle|^2$

111. The Parallelogram Law from Euclidean Geometry is: The sum of the squares of the lengths of the sides of a parallelogram is equal to the sum of the squares of the lengths of the diagonals. If u and v are vectors that form two sides of a parallelogram, then the diagonals are u + v and u - v. Prove the vector form of the Parallelogram Law

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

112. An $n \times n$ matrix is called *unitary* if $U' = U^{-1}$.

- (a) For C an $m \times k$ matrix, prove that the columns of C form an orthonormal set if and only if C'C = I.
- (b) Prove that an $n \times n$ matrix U is unitary if and only if its columns form an orthonormal basis for \mathbb{C}^n .
- (c) Prove: if U and V are unitary, then U^{-1} and UV are also unitary.
- (d) Show that if U is unitary, then the transformation $x \mapsto Ux$ is a rigid motion in the sense that, for v and w vectors in \mathbb{C}^n , $\langle Uv, Uw \rangle = \langle v, w \rangle$ and ||Uv|| = ||v||, so for vectors in \mathbb{R}^n , the angle between Uv and Uw is the same as the angle between v and w.

113. The Gram-Schmidt algorithm is specifically created to preserve order:

If v_1, v_2, \dots, v_k is an ordered set of vectors in an inner product space \mathcal{V} , then applying the Gram-Schmidt algorithm gives an *orthogonal set* of vectors w_1, w_2, \dots, w_k , so that for $1 \leq j \leq k$, the span of $\{v_1, v_2, \dots, v_j\}$ is the same as $\operatorname{span}\{w_1, w_2, \dots, w_j\}$.

This is especially important in some engineering or differential equations settings. If $\mathcal{V} = L^2([-1,1])$, then the functions $1, x, x^2, x^3, \cdots$ span \mathcal{V} in the sense that the closure of the set of polynomials in x is \mathcal{V} . The usual inner product on \mathcal{V} is $\langle f, g \rangle = \int_{-1}^{1} \overline{f(t)}g(t) dt$, and the *Legendre polynomials* are the orthonormal basis obtained by using Gram-Schmidt on the set of monomials, in the given order, so that the k^{th} Legendre polynomial is a polynomial of degree k-1.

For \mathcal{V} an inner product space, let v_1, v_2, \dots, v_k be an ordered set of vectors in \mathcal{V} . For $1 \leq j \leq k-1$, let P_j be the orthogonal projection of \mathcal{V} onto $\operatorname{span}\{v_1, \dots, v_j\}$. Let $w_1 = v_1$, let $w_2 = v_2 - P_1(v_2)$, and more generally, for j < k, let $w_{j+1} = v_{j+1} - P_j(v_{j+1})$. Prove that $\{w_1, w_2, \dots, w_k\}$ is an orthogonal set of vectors such that, for $1 \leq j \leq k$, the span of $\{v_1, v_2, \dots, v_j\}$ is the same as $\operatorname{span}\{w_1, w_2, \dots, w_j\}$. In other words, the ordered set $\{w_1, w_2, \dots, w_k\}$ is the same set as produced by the Gram-Schmidt process.

- **114.** Let M be the hyperplane in \mathbb{C}^4 with equation a+b-c+2d=0. Find the matrix (with respect to the usual basis) for the orthogonal projection of \mathbb{C}^4 onto M. Use it to find the point of M closest to (1, 1, 1, 1).
- **115.** Let U be an $n \times n$ complex matrix that is unitary.
 - (a) Prove that if λ is an eigenvalue of U, then $|\lambda| = 1$.
 - (b) Prove that the determinant of U has absolute value 1.
- **116.** Let \mathcal{V} be an inner product space and let $W \neq (0)$ be a subspace of \mathcal{V} . Let P be an operator on \mathcal{V} with range(P) = W and $P^2 = P$.
 - (a) Show that there is v in \mathcal{V} such that $||Pv|| \ge ||v||$.
 - (b) Show that P is the orthogonal projection of \mathcal{V} onto W if and only if $||Pv|| \leq ||v||$ for all v in \mathcal{V} .
- 117. Find unitary matrix U and upper triangular matrix T so that $U^{-1}AU = T$ where

$$A = \begin{pmatrix} 1 & -2 & 2 & 1 \\ 0 & -5 & -2 & 3 \\ 0 & 2 & -1 & -1 \\ 0 & -8 & -4 & 5 \end{pmatrix}$$

- **118.** Find all 5×5 matrices N that are both nilpotent and Hermitian.
- **119.** The 5×5 matrix S is Hermitian and v is an eigenvector for S with eigenvalue -3. The vector w is perpendicular to v. Prove that Sw is also perpendicular to v.
- **120.** Prove that the product of two Hermitian matrices is Hermitian if and only if the matrices commute.
- **121.** (a) Let B be a Hermitian matrix and let $A = B^2$. Prove that if λ is an eigenvalue of A, then λ is real and $\lambda \ge 0$.
 - (b) A converse of part (a): Let C be a Hermitian matrix all of whose eigenvalues are non-negative real numbers. Prove that there is a Hermitian matrix B, all of whose eigenvalues are non-negative real numbers, such that $B^2 = C$.
 - (c) The eigenvalues of $C = \begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix}$ are 1 and 9. Find a Hermitian matrix B, all of whose eigenvalues are non-negative, such that $B^2 = C$.
- 122. Let T be a normal matrix on the inner product space. Prove that T is Hermitian if and only if all the eigenvalues of T are real and that T is unitary if and only if all the eigenvalues have modulus 1.

- (a) Show that N is a normal matrix.
- (b) Find a unitary matrix U that diagonalizes N.
- 124. Let \mathcal{V} be the vector space of $n \times n$ complex matrices. Make \mathcal{V} into an inner product space by defining the inner product of two $n \times n$ complex matrices A and B to be $\langle A, B \rangle = \operatorname{tr}(A^*B)$. For M a fixed $n \times n$ matrix, let T_M be the linear transformation on \mathcal{V} defined by $T_M(A) = MA$. Prove that T_M is unitary on \mathcal{V} if and only if M is a unitary matrix.
- 125. For T a linear transformation on an inner product space, prove that T is normal if and only if there are Hermitian matrices T_1 and T_2 that commute with each other such that $T = T_1 + iT_2$.
- **126.** Let C and D be $n \times n$ matrices.
 - (a) Prove that the nullspace of D is a subset of the nullspace of CD.
 - (b) Prove that the range of CD is a subset of the range of C.
 - (c) Use the results of (a) and (b) to prove that

 $\operatorname{rank}(CD) \le \operatorname{rank}(C)$ and $\operatorname{rank}(CD) \le \operatorname{rank}(D)$.

127. Let N be a nilpotent matrix of order k. Prove that I + N is invertible and that

$$(I+N)^{-1} = I - N + N^2 - N^3 + \dots + (-1)^{k-1} N^{k-1}$$

128. Let T be a linear transformation on a finite dimensional vector space \mathcal{V} that has characteristic polynomial

$$f = (x - c_1)^{d_1} (x - c_2)^{d_2} \cdots (x - c_k)^{d_k}$$

and minimal polynomial

$$p = (x - c_1)^{r_1} (x - c_2)^{r_2} \cdots (x - c_k)^{r_k}$$

Let W_i be the null space of $(T - c_i I)^{r_i}$.

- (a) Prove that W_i is an invariant subspace for T.
- (b) Letting T_i denote the restriction of T to the invariant subspace W_i , show that $T_i c_i I$ is nilpotent on W_i and find its order of nilpotence.
- (c) Find the minimal polynomial of T_i , the characteristic polynomial of T_i , and the dimension of W_i .

129. Let k and ℓ be positive integers with $k + \ell = n$ and suppose \mathcal{V} is an

n-dimensional vector space over the field *F*. Suppose the sets $\mathcal{B}_1 = \{u_1, u_2, \dots, u_k\}$ and $\mathcal{B}_2 = \{v_1, v_2, \dots, v_\ell\}$ are sets of vectors for which $\mathcal{B}_1 \cup \mathcal{B}_2$ forms a basis for \mathcal{V} . Prove that if $\{a_{ij}\}_{i=1,j=1}^k \stackrel{\ell}{}$ are numbers in *F* and

$$w_j = v_j + \sum_{i=1}^k a_{ij} u_i \quad \text{for} \quad 1 \le j \le \ell$$

then the set $\mathcal{B}_1 \cup \mathcal{B}_3$ also forms a basis for \mathcal{V} where $\mathcal{B}_3 = \{w_1, w_2, \cdots, w_\ell\}$.

A Related Topic Not Covered in Math 55400

Definition: Let \mathcal{V} be a real or complex vector space and let K be a non-empty set in \mathcal{V} .

The set K is convex if for each p and q in K and each real number t with $0 \le t \le 1$, the point tp + (1-t)q is also in K.

130. Suppose \mathcal{V} is a real or complex vector space and suppose, for some positive integer ℓ , the sets K_1, K_2, \cdots , and K_ℓ are convex sets in V.

Prove: If $\bigcap_{j=1}^{\ell} K_j$ is non-empty, then it is a convex set.

131. Suppose V is a real or complex vector space and suppose the set K is a convex subset of V.

Let f be the function defined for x in V by $f(x) = v_0 + Tx$ for v_0 a vector in V and T a linear transformation of V into V. (The function f is an example of an *affine map.*) Prove that f(K) is a convex set in V also.

Definition: Let f be a non-zero linear functional on \mathbb{R}^n and let c be a real number. The set $H = \{x \in \mathbb{R}^n : f(x) \leq c\}$ is called a *closed half-space of* \mathbb{R}^n . If ℓ is a positive integer and H_1, H_2, \cdots , and H_ℓ are closed half spaces in \mathbb{R}^n , then the set $\bigcap_{j=1}^{\ell} H_j$ is called a *closed polyhedron* in \mathbb{R}^n if it is non-empty.

132. Prove that a closed polyhedron in \mathbb{R}^n is a convex set.

133. Let K be a closed polyhedron in \mathbb{R}^n , let g be a linear functional on \mathbb{R}^n , and let r be a real number. Prove that $K \cap \{x \in \mathbb{R}^n : g(x) = r\}$ is either empty or a convex set.