April 29: For Discussion!

For the following problems, unless otherwise specified, assume all vectors are in \mathbb{C}^{n} for some positive integer, n, and the inner product, $\langle\cdot, \cdot\rangle$, is the Euclidean inner product.
110. Let $\mathcal{B}=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ be an orthonormal set of vectors in \mathbb{C}^{n}.
(a) Prove that \mathcal{B} is basis for \mathbb{C}^{n}, that is, an orthonormal basis, and that for any u in \mathbb{C}^{n}

$$
u=<w_{1}, u>w_{1}+<w_{2}, u>w_{2}+\cdots+<w_{n}, u>w_{n}
$$

(b) Prove: for u and v in $\left.\left.\mathbb{C}^{n},\langle u, v\rangle=\sum_{j=1}^{n} \overline{\left\langle w_{j}, u>\right.}<w_{j}, v\right\rangle=\sum_{j=1}^{n}\left\langle u, w_{j}\right\rangle<w_{j}, v\right\rangle$ and therefore that $\|u\|^{2}=\sum_{j=1}^{n} \mid\left\langle w_{j}, u>\left.\right|^{2}\right.$
111. The Parallelogram Law from Euclidean Geometry is: The sum of the squares of the lengths of the sides of a parallelogram is equal to the sum of the squares of the lengths of the diagonals. If u and v are vectors that form two sides of a parallelogram, then the diagonals are $u+v$ and $u-v$. Prove the vector form of the Parallelogram Law

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

112. An $n \times n$ matrix is called unitary if $U^{\prime}=U^{-1}$.
(a) For C an $m \times k$ matrix, prove that the columns of C form an orthonormal set if and only if $C^{\prime} C=I$.
(b) Prove that an $n \times n$ matrix U is unitary if and only if its columns form an orthonormal basis for \mathbb{C}^{n}.
(c) Prove: if U and V are unitary, then U^{-1} and $U V$ are also unitary.
(d) Show that if U is unitary, then the transformation $x \mapsto U x$ is a rigid motion in the sense that, for v and w vectors in $\mathbb{C}^{n},\langle U v, U w\rangle=\langle v, w\rangle$ and $\|U v\|=\|v\|$, so for vectors in \mathbb{R}^{n}, the angle between $U v$ and $U w$ is the same as the angle between v and w.
113. The Gram-Schmidt algorithm is specifically created to preserve order:

If $v_{1}, v_{2}, \cdots, v_{k}$ is an ordered set of vectors in an inner product space \mathcal{V}, then applying the Gram-Schmidt algorithm gives an orthogonal set of vectors $w_{1}, w_{2}, \cdots, w_{k}$, so that for $1 \leq j \leq k$, the span of $\left\{v_{1}, v_{2}, \cdots, v_{j}\right\}$ is the same as $\operatorname{span}\left\{w_{1}, w_{2}, \cdots, w_{j}\right\}$.

This is especially important in some engineering or differential equations settings. If $\mathcal{V}=L^{2}([-1,1])$, then the functions $1, x, x^{2}, x^{3}, \cdots$ span \mathcal{V} in the sense that the closure of the set of polynomials in x is \mathcal{V}. The usual inner product on \mathcal{V} is $\langle f, g\rangle=\int_{-1}^{1} \overline{f(t)} g(t) d t$, and the Legendre polynomials are the orthonormal basis obtained by using Gram-Schmidt on the set of monomials, in the given order, so that the $k^{\text {th }}$ Legendre polynomial is a polynomial of degree $k-1$.

For \mathcal{V} an inner product space, let $v_{1}, v_{2}, \cdots, v_{k}$ be an ordered set of vectors in \mathcal{V}.
For $1 \leq j \leq k-1$, let P_{j} be the orthogonal projection of \mathcal{V} onto $\operatorname{span}\left\{v_{1}, \cdots, v_{j}\right\}$. Let $w_{1}=v_{1}$, let $w_{2}=v_{2}-P_{1}\left(v_{2}\right)$, and more generally, for $j<k$, let $w_{j+1}=v_{j+1}-P_{j}\left(v_{j+1}\right)$. Prove that $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ is an orthogonal set of vectors such that, for $1 \leq j \leq k$, the span of $\left\{v_{1}, v_{2}, \cdots, v_{j}\right\}$ is the same as $\operatorname{span}\left\{w_{1}, w_{2}, \cdots, w_{j}\right\}$. In other words, the ordered set $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ is the same set as produced by the Gram-Schmidt process.
114. Let M be the hyperplane in \mathbb{C}^{4} with equation $a+b-c+2 d=0$. Find the matrix (with respect to the usual basis) for the orthogonal projection of \mathbb{C}^{4} onto M. Use it to find the point of M closest to $(1,1,1,1)$.
115. Let U be an $n \times n$ complex matrix that is unitary.
(a) Prove that if λ is an eigenvalue of U, then $|\lambda|=1$.
(b) Prove that the determinant of U has absolute value 1 .
116. Let \mathcal{V} be an inner product space and let $W \neq(0)$ be a subspace of \mathcal{V}. Let P be an operator on \mathcal{V} with $\operatorname{range}(P)=W$ and $P^{2}=P$.
(a) Show that there is v in \mathcal{V} such that $\|P v\| \geq\|v\|$.
(b) Show that P is the orthogonal projection of \mathcal{V} onto W if and only if $\|P v\| \leq\|v\|$ for all v in \mathcal{V}.
117. Find unitary matrix U and upper triangular matrix T so that $U^{-1} A U=T$ where

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 2 & 1 \\
0 & -5 & -2 & 3 \\
0 & 2 & -1 & -1 \\
0 & -8 & -4 & 5
\end{array}\right)
$$

118. Find all 5×5 matrices N that are both nilpotent and Hermitian.
119. The 5×5 matrix S is Hermitian and v is an eigenvector for S with eigenvalue -3 .

The vector w is perpendicular to v. Prove that $S w$ is also perpendicular to v.
120. Prove that the product of two Hermitian matrices is Hermitian if and only if the matrices commute.
121. (a) Let B be a Hermitian matrix and let $A=B^{2}$. Prove that if λ is an eigenvalue of A, then λ is real and $\lambda \geq 0$.
(b) A converse of part (a):

Let C be a Hermitian matrix all of whose eigenvalues are non-negative real numbers. Prove that there is a Hermitian matrix B, all of whose eigenvalues are non-negative real numbers, such that $B^{2}=C$.
(c) The eigenvalues of $C=\left(\begin{array}{rr}5 & -4 \\ -4 & 5\end{array}\right)$ are 1 and 9 . Find a Hermitian matrix B, all of whose eigenvalues are non-negative, such that $B^{2}=C$.
122. Let T be a normal matrix on the inner product space.

Prove that T is Hermitian if and only if all the eigenvalues of T are real and that T is unitary if and only if all the eigenvalues have modulus 1.
123. Let N be the matrix $N=\left(\begin{array}{rrrr}1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1\end{array}\right)$
(a) Show that N is a normal matrix.
(b) Find a unitary matrix U that diagonalizes N.
124. Let \mathcal{V} be the vector space of $n \times n$ complex matrices. Make \mathcal{V} into an inner product space by defining the inner product of two $n \times n$ complex matrices A and B to be $\langle A, B\rangle=\operatorname{tr}\left(A^{*} B\right)$. For M a fixed $n \times n$ matrix, let T_{M} be the linear transformation on \mathcal{V} defined by $T_{M}(A)=M A$. Prove that T_{M} is unitary on \mathcal{V} if and only if M is a unitary matrix.
125. For T a linear transformation on an inner product space, prove that T is normal if and only if there are Hermitian matrices T_{1} and T_{2} that commute with each other such that $T=T_{1}+i T_{2}$.
126. Let C and D be $n \times n$ matrices.
(a) Prove that the nullspace of D is a subset of the nullspace of $C D$.
(b) Prove that the range of $C D$ is a subset of the range of C.
(c) Use the results of (a) and (b) to prove that

$$
\operatorname{rank}(C D) \leq \operatorname{rank}(C) \quad \text { and } \quad \operatorname{rank}(C D) \leq \operatorname{rank}(D)
$$

127. Let N be a nilpotent matrix of order k. Prove that $I+N$ is invertible and that

$$
(I+N)^{-1}=I-N+N^{2}-N^{3}+\cdots+(-1)^{k-1} N^{k-1}
$$

128. Let T be a linear transformation on a finite dimensional vector space \mathcal{V} that has characteristic polynomial

$$
f=\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \cdots\left(x-c_{k}\right)^{d_{k}}
$$

and minimal polynomial

$$
p=\left(x-c_{1}\right)^{r_{1}}\left(x-c_{2}\right)^{r_{2}} \cdots\left(x-c_{k}\right)^{r_{k}}
$$

Let W_{i} be the null space of $\left(T-c_{i} I\right)^{r_{i}}$.
(a) Prove that W_{i} is an invariant subspace for T.
(b) Letting T_{i} denote the restriction of T to the invariant subspace W_{i}, show that $T_{i}-c_{i} I$ is nilpotent on W_{i} and find its order of nilpotence.
(c) Find the minimal polynomial of T_{i}, the characteristic polynomial of T_{i}, and the dimension of W_{i}.
129. Let k and ℓ be positive integers with $k+\ell=n$ and suppose \mathcal{V} is an n-dimensional vector space over the field F. Suppose the sets $\mathcal{B}_{1}=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ and $\mathcal{B}_{2}=\left\{v_{1}, v_{2}, \cdots, v_{\ell}\right\}$ are sets of vectors for which $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ forms a basis for \mathcal{V}. Prove that if $\left\{a_{i j}\right\}_{i=1, j=1}^{k}$ are numbers in F and

$$
w_{j}=v_{j}+\sum_{i=1}^{k} a_{i j} u_{i} \quad \text { for } \quad 1 \leq j \leq \ell
$$

then the set $\mathcal{B}_{1} \cup \mathcal{B}_{3}$ also forms a basis for \mathcal{V} where $\mathcal{B}_{3}=\left\{w_{1}, w_{2}, \cdots, w_{\ell}\right\}$.

A Related Topic Not Covered in Math 55400

Definition: Let \mathcal{V} be a real or complex vector space and let K be a non-empty set in \mathcal{V}.
The set K is convex if for each p and q in K and each real number t with $0 \leq t \leq 1$, the point $t p+(1-t) q$ is also in K.
130. Suppose \mathcal{V} is a real or complex vector space and suppose, for some positive integer ℓ, the sets K_{1}, K_{2}, \cdots, and K_{ℓ} are convex sets in V.
Prove: If $\bigcap_{j=1}^{\ell} K_{j}$ is non-empty, then it is a convex set.
131. Suppose V is a real or complex vector space and suppose the set K is a convex subset of V.

Let f be the function defined for x in V by $f(x)=v_{0}+T x$ for v_{0} a vector in V and T a linear transformation of V into V. (The function f is an example of an affine map.)

Prove that $f(K)$ is a convex set in V also.
Definition: Let f be a non-zero linear functional on \mathbb{R}^{n} and let c be a real number. The set $H=\left\{x \in \mathbb{R}^{n}: f(x) \leq c\right\}$ is called a closed half-space of \mathbb{R}^{n}. If ℓ is a positive integer and H_{1}, H_{2}, \cdots, and H_{ℓ} are closed half spaces in \mathbb{R}^{n}, then the set $\bigcap_{j=1}^{\ell} H_{j}$ is called a closed polyhedron in \mathbb{R}^{n} if it is non-empty.
132. Prove that a closed polyhedron in \mathbb{R}^{n} is a convex set.
133. Let K be a closed polyhedron in \mathbb{R}^{n}, let g be a linear functional on \mathbb{R}^{n}, and let r be a real number. Prove that $K \cap\left\{x \in \mathbb{R}^{n}: g(x)=r\right\}$ is either empty or a convex set.

