April 24

** 103. Let $A=\left(\begin{array}{rrrrrr}1 & 3 & 3 & 3 & 0 & -1 \\ 2 & 0 & 7 & 0 & -8 & -3 \\ -1 & -2 & -3 & -2 & 1 & 1 \\ -2 & 1 & -6 & 1 & 7 & 2 \\ -1 & -1 & -3 & -1 & 2 & 1 \\ 1 & 0 & 3 & 0 & -3 & -1\end{array}\right)$
(a) Show that A is nilpotent and find the order of nilpotence for A.
(b) Find a similarity matrix S so that $J=S^{-1} A S$ is upper triangular with 0 's on the diagonal and the super-diagonal of J consists of 0 's and 1 's and the entries of J are zeros except on the superdiagonal.

* 104. Let $B=\left(\begin{array}{rrrrr}1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & -1 \\ 1 & 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 & 1\end{array}\right)$

Considering B as a matrix with entries in the field \mathbb{C}, the minimal polynomial of B is $p(x)=x^{4}-2 x^{3}+x^{2}$ and the characteristic polynomial is $q(x)=x^{5}-3 x^{4}+3 x^{3}-x^{2}$.
Find a complex matrix A in Jordan canonical form that is similar to B.

* 105. Let C be a 5×5 matrix with characteristic polynomial is $p(x)=(x-2)^{3}(x+7)^{2}$ and minimal polynomial $q(x)=(x-2)^{2}(x+7)$.

Find a matrix in Jordan canonical form that is similar to C.
106. (a) Classify up to similarity all 3×3 matrices over \mathbb{C} that satisfy $A^{3}=I$. (Justify!!)
(b) Classify up to similarity all 4×4 matrices over \mathbb{C} that satisfy $A^{4}=I$. (Justify!!)
107. (a) Suppose N is a $k \times k$ matrix over \mathbb{C} that satisfies $N^{k}=0$, but $N^{k-1} \neq 0$.

Prove that N is similar to its transpose, N^{t}.
(b) Use Jordan Canonical Form and part (a) to show that all $n \times n$ complex matrices are similar to their transposes.

* 108. Prove that an orthogonal set of non-zero vectors is linearly independent.
* 109. Let $A=\left(\begin{array}{rrrr}1 & 1 & -1 & 2 \\ -1 & 0 & 2 & -3 \\ 1 & -1 & -3 & 4\end{array}\right)$

The vectors $v_{1}=(2,-1,1,0)$ and $v_{2}=(-3,1,0,1)$ are a basis for the nullspace of A.
(a) Find a basis for the range of A.
(b) Find a basis for the range of A^{\prime}.
(c) Find a basis for the orthogonal complement of the range of A^{\prime}.
(d) Find a basis for the nullspace of A^{\prime}.

