April 24

** **103.** Let
$$A = \begin{pmatrix} 1 & 3 & 3 & 3 & 0 & -1 \\ 2 & 0 & 7 & 0 & -8 & -3 \\ -1 & -2 & -3 & -2 & 1 & 1 \\ -2 & 1 & -6 & 1 & 7 & 2 \\ -1 & -1 & -3 & -1 & 2 & 1 \\ 1 & 0 & 3 & 0 & -3 & -1 \end{pmatrix}$$

- (a) Show that A is nilpotent and find the order of nilpotence for A.
- (b) Find a similarity matrix S so that $J = S^{-1}AS$ is upper triangular with 0's on the diagonal and the super-diagonal of J consists of 0's and 1's and the entries of J are zeros except on the superdiagonal.

* **104.** Let
$$B = \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & -1 \\ 1 & 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 & 1 \end{pmatrix}$$

Considering B as a matrix with entries in the field \mathbb{C} , the minimal polynomial of B is $p(x) = x^4 - 2x^3 + x^2$ and the characteristic polynomial is $q(x) = x^5 - 3x^4 + 3x^3 - x^2$. Find a complex matrix A in Jordan canonical form that is similar to B.

- * 105. Let C be a 5×5 matrix with characteristic polynomial is $p(x) = (x 2)^3 (x + 7)^2$ and minimal polynomial $q(x) = (x - 2)^2 (x + 7)$. Find a matrix in Jordan canonical form that is similar to C.
- 106. (a) Classify up to similarity all 3×3 matrices over \mathbb{C} that satisfy $A^3 = I$. (Justify!!) (b) Classify up to similarity all 4×4 matrices over \mathbb{C} that satisfy $A^4 = I$. (Justify!!)
- 107. (a) Suppose N is a $k \times k$ matrix over \mathbb{C} that satisfies $N^k = 0$, but $N^{k-1} \neq 0$. Prove that N is similar to its transpose, N^t .
 - (b) Use Jordan Canonical Form and part (a) to show that all $n \times n$ complex matrices are similar to their transposes.
- * 108. Prove that an orthogonal set of non-zero vectors is linearly independent.

* **109.** Let
$$A = \begin{pmatrix} 1 & 1 & -1 & 2 \\ -1 & 0 & 2 & -3 \\ 1 & -1 & -3 & 4 \end{pmatrix}$$

The vectors $v_1 = (2, -1, 1, 0)$ and $v_2 = (-3, 1, 0, 1)$ are a basis for the nullspace of A.

- (a) Find a basis for the range of A.
- (b) Find a basis for the range of A'.
- (c) Find a basis for the orthogonal complement of the range of A'.
- (d) Find a basis for the nullspace of A'.