April 17

94. Let T be the linear transformation on \mathbb{C}^{3} whose matrix with respect to the usual basis is

$$
\left(\begin{array}{rcr}
1 & i & 0 \\
-1 & 2 & -i \\
0 & 1 & 1
\end{array}\right)
$$

(a) Find the T-annihilator of $(1,0,0)$.
(b) Find the T-annihilator of $(1,0, i)$.

* 95. Let S be the linear transformation on \mathbb{R}^{3}
represented in the usual basis by the matrix $\left(\begin{array}{ccc}2 & -6 & 3 \\ 3 & -7 & 3 \\ 6 & -12 & 5\end{array}\right)$

If p is the minimal polynomial for a matrix, Theorem 12 from class and the text uses the factorization $p=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ where k and r_{1}, \cdots, r_{k} are all positive integers.
(a) Express the minimal polynomial for S as $p=p_{1}^{r_{1}} p_{2}^{r_{2}}$ where p_{1} and p_{2} are monic, irreducible polynomials over \mathbb{R}.
(b) For both $j=1$ and $j=2$, find a basis \mathcal{B}_{j} for W_{j}, the null space of $p_{j}(S)$.
(c) Find the matrices for S_{1} and S_{2}, the restrictions of S to W_{1} and W_{2}, with respect to these bases, and also find the matrix for S with respect to the basis $\mathcal{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}\right\}$.
** 96. Let T be the linear transformation on \mathbb{R}^{4} be the linear transformation on \mathbb{R}^{4} represented in the usual basis by the matrix $\quad\left(\begin{array}{rrrr}3 & -2 & 2 & 2 \\ 2 & -1 & 1 & -1 \\ -5 & 2 & -4 & -6 \\ 2 & 0 & 2 & 2\end{array}\right)$
Note that \mathbb{R}^{4} is a real vector space, not a complex vector space.
(a) Find the minimal polynomial of T.
(b) Find the characteristic polynomial of T.
(c) Factor each of these polynomials as a product of monic irreducible polynomials over \mathbb{R}.
(d) Using Theorem 12 and your answer to (c), identify k, r_{1}, \cdots, r_{k} and polynomials p_{1}, \cdots, p_{k} as in the theorem.
(e) Using the notation of Theorem 12, find a basis for each of the subspaces, W_{1}, \cdots, W_{k}.
(f) For each j, with $1 \leq j \leq k$, using the notation of Theorem 12 , find the matrix for T_{1}, \cdots, T_{k}, each with respect to the appropriate basis found above.
(g) Find the matrix for T with respect to the basis for \mathbb{R}^{4} that comes from combining the bases for W_{1}, \cdots, W_{k}.

* 97. Let U be the linear transformation on \mathbb{R}^{3} represented in the usual basis by the matrix $\quad\left(\begin{array}{rrr}3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0\end{array}\right)$
Show that there are a diagonalizable operator D and a nilpotent operator N on \mathbb{R}^{3} so that $U=D+N$ and $D N=N D$. Find the matrices for D and N in the usual basis for \mathbb{R}^{3}.

98. Let T be a linear transformation on the finite dimensional vector space \mathcal{V}.
(a) Prove that if T^{2} has a cyclic vector, then T has a cyclic vector.
(b) Is the converse true? Either give a proof or a counterexample to show that your answer is correct.

* 99. Let N be a nilpotent linear transformation on the n-dimensional vector space \mathcal{V}.
(a) Prove: N has a cyclic vector if and only if $N^{n-1} \neq 0$.
(b) If v is a vector in \mathcal{V} for which $N^{n-1} v \neq 0$, what is the matrix for N with respect to the basis $v, N v, \cdots, N^{n-1} v$.

100. Prove that if A and B are 3×3 matrices over the field F, then A and B are similar if and only if they have the same minimal polynomials and the same characteristic polynomials. Give an example that shows this is not a theorem for 4×4 matrices.

* 101. Let C be a linear transformation on a finite dimensional vector space \mathcal{V}.
(a) Prove: If C does not have a cyclic vector, there is an transformation G that commutes with C, but G is not a polynomial in C.
(b) Prove: If C has a cyclic vector, every transformation that commutes with C is a polynomial in C.
In other words, C has a cyclic vector if and only if every transformation that commutes with C is a polynomial in C.

102. (a) Let A be a linear transformation on the vector space \mathcal{V} and let $v_{1}, v_{2}, \cdots, v_{k}$ be vectors in \mathcal{V}.
Prove: If the set $\left\{A v_{1}, A v_{2}, \cdots, A v_{k}\right\}$ is a linearly independent set, then the set $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is also linearly independent.
(b) Show that the converse of the statement in part (a) is false: that is, find a linear transformation T on a vector space \mathcal{V} and a set $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ of vectors in \mathcal{V} that are linearly independent, but the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \cdots, T\left(v_{k}\right)\right\}$ is linearly dependent.
