- 83. Let \mathcal{V} be an *n*-dimensional vector space over the field F. Show that if M is any subspace of \mathcal{V} , there is a subspace L of \mathcal{V} for which $M \oplus L = \mathcal{V}$. Indeed, if \mathcal{V} is \mathbb{R}^n or \mathbb{C}^n , and $0 < \dim(M) < n$, show that there are infinitely many such subspaces.
- * 84. Let \mathcal{V} be an *n*-dimensional vector space over the field F and let W_1, W_2, \dots, W_k be subspaces of \mathcal{V} such that

 $\mathcal{V} = W_1 + W_2 + \dots + W_k$ and $\dim(V) = \dim(W_1) + \dim(W_2) + \dots + \dim(W_k)$

Prove that this means $\mathcal{V} = W_1 \oplus W_2 \oplus \cdots \oplus W_k$.

- * 85. Let E be an $n \times n$ matrix over the field F such that $E^2 = E$.
 - (a) Show that I E is also a projection matrix.
 - (b) If E is described as the projection onto R along N, what is the description of I E?

(c) Let
$$Q = \begin{pmatrix} -1 & 2 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

Show that Q is a projection and describe Q as in part (b).

- * 86. Consider the statement: "If a diagonalizable operator has only eigenvalues 0 and 1, then it is a projection." If it is true, prove it; if it is false, find an example.
- 87. Let E_1, E_2, \dots, E_k be projection matrices on \mathbb{R}^n for which $E_1 + E_2 + \dots + E_k = I$. Use the trace function to show that $E_i E_j = 0$ for $i \neq j$.
- 88. Let E be a projection on the real vector space \mathcal{V} . Prove that I + E is invertible and find $(I + E)^{-1}$.
- **89.** Suppose \mathcal{V} is a vector space over the field F and for $j = 1, \dots, k$ the subspaces W_j satisfy

$$\mathcal{V} = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$

Let T be a linear transformation on \mathcal{V} for which the subspaces W_j are invariant for $j = 1, \dots, k$, let T_j be the restriction of T to W_j , let A_j be the matrix for T_j with respect to the basis \mathcal{B}_j for W_j , and let A be the matrix for T with respect to the basis $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_k\}$ for \mathcal{V} .

- (a) Show that $\det(A) = \det(A_1) \det(A_2) \cdots \det(A_k)$.
- (b) Prove that if f_j is the characteristic polynomial of T_j and A_j , then the characteristic polynomial of T and A is f, the product of the f_j 's.
- (c) Prove that the minimal polynomial of T and A is the least common multiple of the minimal polynomials of the T_j 's.

- **90.** Let *P* and *Q* be projections on the real vector space \mathcal{V} for which PQ = QP. Prove that PQ is also a projection and find the range and nullspace of PQ.
- **91.** Suppose \mathcal{V} is a vector space over the field F and E and T are, respectively, a projection and a linear transformation on \mathcal{V} .
 - (a) Show that the range of E is invariant for T if and only if ETE = TE.
 - (b) Show that the range and nullspace of E are both invariant for T if and only if TE = ET.
 - (c) Which operators commute with *every* projection on \mathcal{V} ?

* **92.** Let
$$G = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

(It might be helpful to observe that 1 is an eigenvalue of G.)

- (a) Find the characteristic and minimal polynomials for G and explain how you know that G is diagonalizable over the field \mathbb{R} .
- (b) Find eigenspaces W_1 , W_2 , and W_3 that are invariant subspaces for G giving a direct sum decomposition of \mathbb{R}^4 as $W_1 \oplus W_2 \oplus W_3$.
- (c) Find projections E_1 , E_2 , and E_3 so that $E_1 + E_2 + E_3 = I$, $E_i E_j = 0$ for $i \neq j$ and $G = aE_1 + bE_2 + cE_3$ for some real numbers a, b, and c.
- ** 93. Let \mathcal{V} be an *n*-dimensional vector space, suppose that c_1, c_2, \dots, c_k are distinct scalars in the field F, and suppose E_1, E_2, \dots, E_k are projections on \mathcal{V} such that $E_i E_j = 0$ for $i \neq j$ and $I = \sum_{j=1}^k E_j$.

Let $T = c_1 E_1 + c_2 E_2 + \dots + c_k E_k$.

- (a) Find (and prove) a simple expression for T^2 in terms of the E_i 's.
- (b) For p a polynomial, find (and prove) a simple expression for p(T) in terms of the E_j 's.
- (c) Find the minimal polynomial for T and find characteristic polynomial for T.