April 10

83. Let \mathcal{V} be an n-dimensional vector space over the field F. Show that if M is any subspace of \mathcal{V}, there is a subspace L of \mathcal{V} for which $M \oplus L=\mathcal{V}$. Indeed, if \mathcal{V} is \mathbb{R}^{n} or \mathbb{C}^{n}, and $0<\operatorname{dim}(M)<n$, show that there are infinitely many such subspaces.

* 84. Let \mathcal{V} be an n-dimensional vector space over the field F and let $W_{1}, W_{2}, \cdots, W_{k}$ be subspaces of \mathcal{V} such that

$$
\mathcal{V}=W_{1}+W_{2}+\cdots+W_{k} \quad \text { and } \quad \operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)+\cdots+\operatorname{dim}\left(W_{k}\right)
$$

Prove that this means $\mathcal{V}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$.

* 85. Let E be an $n \times n$ matrix over the field F such that $E^{2}=E$.
(a) Show that $I-E$ is also a projection matrix.
(b) If E is described as the projection onto R along N, what is the description of $I-E$?
(c) Let $Q=\left(\begin{array}{rrr}-1 & 2 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 2\end{array}\right)$

Show that Q is a projection and describe Q as in part (b).

* 86. Consider the statement: "If a diagonalizable operator has only eigenvalues 0 and 1 , then it is a projection." If it is true, prove it; if it is false, find an example.

87. Let $E_{1}, E_{2}, \cdots, E_{k}$ be projection matrices on \mathbb{R}^{n} for which $E_{1}+E_{2}+\cdots+E_{k}=I$. Use the trace function to show that $E_{i} E_{j}=0$ for $i \neq j$.
88. Let E be a projection on the real vector space \mathcal{V}. Prove that $I+E$ is invertible and find $(I+E)^{-1}$.
89. Suppose \mathcal{V} is a vector space over the field F and for $j=1, \cdots, k$ the subspaces W_{j} satisfy

$$
\mathcal{V}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}
$$

Let T be a linear transformation on \mathcal{V} for which the subspaces W_{j} are invariant for $j=1, \cdots, k$, let T_{j} be the restriction of T to W_{j}, let A_{j} be the matrix for T_{j} with respect to the basis \mathcal{B}_{j} for W_{j}, and let A be the matrix for T with respect to the basis $\mathcal{B}=\left\{\mathcal{B}_{1}, \cdots, \mathcal{B}_{k}\right\}$ for \mathcal{V}.
(a) Show that $\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \cdots \operatorname{det}\left(A_{k}\right)$.
(b) Prove that if f_{j} is the characteristic polynomial of T_{j} and A_{j}, then the characteristic polynomial of T and A is f, the product of the f_{j} 's.
(c) Prove that the minimal polynomial of T and A is the least common multiple of the minimal polynomials of the T_{j} 's.
90. Let P and Q be projections on the real vector space \mathcal{V} for which $P Q=Q P$.

Prove that $P Q$ is also a projection and find the range and nullspace of $P Q$.
91. Suppose \mathcal{V} is a vector space over the field F and E and T are, respectively, a projection and a linear transformation on \mathcal{V}.
(a) Show that the range of E is invariant for T if and only if $E T E=T E$.
(b) Show that the range and nullspace of E are both invariant for T if and only if $T E=E T$.
(c) Which operators commute with every projection on \mathcal{V} ?
*92. Let $G=\left(\begin{array}{cccc}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}\right)$
(It might be helpful to observe that 1 is an eigenvalue of G.)
(a) Find the characteristic and minimal polynomials for G and explain how you know that G is diagonalizable over the field \mathbb{R}.
(b) Find eigenspaces W_{1}, W_{2}, and W_{3} that are invariant subspaces for G giving a direct sum decomposition of \mathbb{R}^{4} as $W_{1} \oplus W_{2} \oplus W_{3}$.
(c) Find projections E_{1}, E_{2}, and E_{3} so that $E_{1}+E_{2}+E_{3}=I, E_{i} E_{j}=0$ for $i \neq j$ and $G=a E_{1}+b E_{2}+c E_{3}$ for some real numbers a, b, and c.
93. Let \mathcal{V} be an n-dimensional vector space, suppose that $c_{1}, c_{2}, \cdots, c_{k}$ are distinct scalars in the field F, and suppose $E_{1}, E_{2}, \cdots, E_{k}$ are projections on \mathcal{V} such that $E_{i} E_{j}=0$ for $i \neq j$ and $I=\sum_{j=1}^{k} E_{j}$.

Let $T=c_{1} E_{1}+c_{2} E_{2}+\cdots+c_{k} E_{k}$.
(a) Find (and prove) a simple expression for T^{2} in terms of the E_{j} 's.
(b) For p a polynomial, find (and prove) a simple expression for $p(T)$ in terms of the E_{j} 's.
(c) Find the minimal polynomial for T and find characteristic polynomial for T.

