April 3

74. \quad Let $A=\left(\begin{array}{rrr}6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3\end{array}\right)$

Show that A is not similar, over the field \mathbb{R}, to a diagonal matrix.
Is A similar to a diagonal matrix over \mathbb{C} ?

* 75. Let B be an $n \times n$ matrix over the field F and let v be a vector in F^{n}.
(a) Prove that the set

$$
J_{v}=\{p \in F[x]: p(B) v=0\}
$$

is an ideal in $F[x]$.
(b) Prove that the monic generator, q, of J_{v} must divide the minimal polynomial of B and, therefore, it must divide the characteristic polynomial of B.
(c) Conclude: If the degree of q is n, then q is actually the characteristic polynomial of B.

* 76. \quad Let $C=\left(\begin{array}{cccc}1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}\right)$

Choose a non-zero vector v in \mathbb{C}^{4} and find a monic polynomial q for which $q(C) v=0$. Use your answer, q, to find the characteristic polynomial for C.

* 77. Let C and D be $n \times n$ matrices over the field F.
(a) Prove that if $I-C D$ is invertible, then $I-D C$ is also invertible and

$$
(I-D C)^{-1}=I+D(I-C D)^{-1} C
$$

(b) Use this result to show that $C D$ and $D C$ have the same eigenvalues over the field F.
78. Let N be a linear transformation on an n-dimensional vector space \mathcal{V} over the field F. Prove: if $N^{k}=0$ for some positive integer k, then $N^{n}=0$.

* 79. \quad Let $E=\left(\begin{array}{rrr}0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2\end{array}\right)$

Either find an upper triangular matrix, F, that is similar to E over the field, \mathbb{R}, of real numbers, or prove that E is not similar to any upper triangular matrix over \mathbb{R}.

* 80. \quad Let $G=\left(\begin{array}{rrr}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right)$
(a) Suppose M is an invariant subspace for an operator H on a vector space \mathcal{V}. Show that the eigenvalues of the restriction of H to M are also eigenvalues of H on \mathcal{V}.
(b) Find all the 1-dimensional invariant subspaces for G.
(c) Find all the 2-dimensional invariant subspaces for G.

81. Find an invertible matrix S so that $S^{-1} P S$ and $S^{-1} Q S$ are both diagonal where P and Q are the real matrices
(a) $P=\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right) \quad$ and $\quad Q=\left(\begin{array}{ll}3 & -8 \\ 0 & -1\end{array}\right)$
(b) $P=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \quad$ and $\quad Q=\left(\begin{array}{cc}1 & \alpha \\ \alpha & 1\end{array}\right)$
82. Look back at exercise 76. You chose a vector 'at random' to use for finding the polynomial q that worked for your vector and the given matrix C.
Probably the degree of the polynomial you found from using your vector was 4.
Suppose A is a 4×4 matrix with complex entries.
(a) For which v in \mathbb{C}^{4} will $A^{4} v, A^{3} v, A^{2} v, A v$ and $I v$ be linearly dependent? Why?
(b) For which v in \mathbb{C}^{4} will $A v$ and $I v$ be linearly dependent? Why?
(c) For which v in \mathbb{C}^{4} will $A^{2} v, A v$ and $I v$ be linearly dependent? Why?
(d) For which v in \mathbb{C}^{4} will $A^{3} v, A^{2} v, A v$ and $I v$ be linearly dependent? Why?
(e) Explain why it was extremely likely that choosing a vector 'at random' from R^{4} would give a polynomial of degree 4 .
