April 3

74. Let
$$A = \begin{pmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{pmatrix}$$

Show that A is not similar, over the field \mathbb{R} , to a diagonal matrix. Is A similar to a diagonal matrix over \mathbb{C} ?

- * 75. Let B be an $n \times n$ matrix over the field F and let v be a vector in F^n .
 - (a) Prove that the set

$$J_v = \{ p \in F[x] : p(B)v = 0 \}$$

is an ideal in F[x].

- (b) Prove that the monic generator, q, of J_v must divide the minimal polynomial of B and, therefore, it must divide the characteristic polynomial of B.
- (c) Conclude: If the degree of q is n, then q is actually the characteristic polynomial of B.

* **76.** Let
$$C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Choose a non-zero vector v in \mathbb{C}^4 and find a monic polynomial q for which q(C)v = 0. Use your answer, q, to find the characteristic polynomial for C.

- * 77. Let C and D be $n \times n$ matrices over the field F.
 - (a) Prove that if I CD is invertible, then I DC is also invertible and

$$(I - DC)^{-1} = I + D(I - CD)^{-1}C$$

- (b) Use this result to show that CD and DC have the same eigenvalues over the field F.
- **78.** Let N be a linear transformation on an n-dimensional vector space \mathcal{V} over the field F. Prove: if $N^k = 0$ for some positive integer k, then $N^n = 0$.

* **79.** Let
$$E = \begin{pmatrix} 0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2 \end{pmatrix}$$

Either find an upper triangular matrix, F, that is similar to E over the field, \mathbb{R} , of real numbers, or prove that E is not similar to any upper triangular matrix over \mathbb{R} .

* 80. Let
$$G = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

- (a) Suppose M is an invariant subspace for an operator H on a vector space \mathcal{V} . Show that the eigenvalues of the restriction of H to M are also eigenvalues of H on \mathcal{V} .
- (b) Find all the 1-dimensional invariant subspaces for G.
- (c) Find all the 2-dimensional invariant subspaces for G.
- 81. Find an invertible matrix S so that $S^{-1}PS$ and $S^{-1}QS$ are both diagonal where P and Q are the real matrices

(a)
$$P = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 3 & -8 \\ 0 & -1 \end{pmatrix}$
(b) $P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $Q = \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix}$

** 82. Look back at exercise 76. You chose a vector 'at random' to use for finding the polynomial q that worked for your vector and the given matrix C.

Probably the degree of the polynomial you found from using your vector was 4.

Suppose A is a 4×4 matrix with complex entries.

- (a) For which v in \mathbb{C}^4 will A^4v , A^3v , A^2v , Av and Iv be linearly dependent? Why?
- (b) For which v in \mathbb{C}^4 will Av and Iv be linearly dependent? Why?
- (c) For which v in \mathbb{C}^4 will A^2v , Av and Iv be linearly dependent? Why?
- (d) For which v in \mathbb{C}^4 will A^3v , A^2v , Av and Iv be linearly dependent? Why?
- (e) Explain why it was extremely likely that choosing a vector 'at random' from R^4 would give a polynomial of degree 4.