March 20

* 60. Let \mathcal{V} be the vector space of polynomials in $\mathbb{R}[x]$ with degree 3 or less. Let a and b be fixed real numbers and let f be the linear functional on \mathcal{V} defined by $f(p)=\int_{a}^{b} p(x) d x$ Let D be the differentiation operator on \mathcal{V}. Find $D^{t} f$.
* 61. Let n be a positive integer and let \mathcal{W} be the vector space of polynomials in $\mathbb{R}[x]$ with degree n or less. Let D be the differentiation operator on \mathcal{W}. Find a basis for the null space of D^{t}.
* 62. Prove that an upper triangular $n \times n$ matrix has determinant the product of the diagonal elements.
* 63. Let n be a positive integer and let $a_{1}, a_{2}, a_{3}, \cdots, a_{n}$ be scalars in the field F. Prove that a Vandermonde matrix

$$
\left(\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\
1 & a_{3} & a_{3}^{2} & \cdots & a_{3}^{n-1} \\
\vdots & \vdots & & \ddots & \vdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1}
\end{array}\right) \quad \text { has determinant } \prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)
$$

64. (a) Write out the 24 permutations of the integers 1 to 4 and classify each permutation as odd or even.
(b) We know that $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$.

Use the signs of the permutations given in part (a) to write the similar formula for the determinant of the 4×4 matrix A, below, in terms of sums of signed products of entries:

$$
\text { If } A=\left(\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
k & l & m & n \\
p & q & r & s
\end{array}\right) \quad \text { then } \quad \operatorname{det}(A)=? ?
$$

