March 6

* 56. Find the g.c.d. of each of the following pairs of polynomials.
(a) $3 x^{4}+8 x^{2}-3$ and $x^{3}+2 x^{2}+3 x+6$.
(b) $x^{4}-2 x^{3}-2 x^{2}-2 x-3$ and $x^{3}+6 x^{2}+7 x+1$.
* 57. Let p be a monic polynomial over the field F and let h be the g.c.d. of the polynomials f and g in $F[x]$. Find the g.c.d. of the polynomials $p f$ and $p g$.
* 58. Use the Lagrange interpolation formula to find a polynomial f with real coefficients and degree no more than 3 such that $f(-1)=-6, f(0)=2, f(1)=-2$, and $f(2)=6$.

Recall: The binomial coefficients are $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ where $n!=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$ and 0 ! is defined to be $0!=1$.

The Binomial Theorem is $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$
59. Let F be a field and let f be in F^{∞}, that is, f is a formal power series with coefficients in F. In analogy with evaluating polynomials at scalars from F, for f in F^{∞} and a in F, define $f(a)$ in F^{∞} by:

$$
\text { For } f=\left(f_{0}, f_{1}, f_{2}, f_{3}, \cdots\right) \quad \text { let } \quad f(a)=\left(f_{0}, f_{1} a, f_{2} a^{2}, f_{3} a^{3}, f_{4} a^{4}, \cdots\right)
$$

For F a subfield of \mathbb{C}, we define the function \exp for a in F, to be $\exp (a)$ is the formal power series

$$
\exp (1)=\left(1,1,(2!)^{-1},(3!)^{-1}, \cdots\right) \text { and } \exp (a)=\left(1, a, a^{2} / 2!, a^{3} / 3!, a^{4} / 4!, \cdots\right)
$$

Using the definition of products in F^{∞} and the binomial theorem, prove that, for a and b in F,

$$
\exp (a) \exp (b)=\exp (a+b)
$$

