## February 20

37. Let $V$ be an $n$-dimensional vector space and let $\mathcal{B}_{1}=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $\mathcal{B}_{2}=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ be bases for $V$. Let $T$ be a linear transformation of $V$ into itself. We say the $n \times n$ matrix $M_{1}$ with entries $\left(a_{i j}\right)$ for $1 \leq i, j \leq n$ is the matrix for the transformation $T$ with respect to the basis $\mathcal{B}_{1}$ if, for each $1 \leq j \leq n$ we have $T\left(v_{j}\right)=a_{1 j} v_{1}+a_{2 j} v_{2}+\cdots+a_{n j} v_{n}$. In the same way, there is an $n \times n$ matrix $M_{2}$ with entries $\left(b_{i j}\right)$ for $1 \leq i, j \leq n$ that is the matrix for $T$ with respect to the basis $\mathcal{B}_{2}$ so that for each $1 \leq j \leq n$ we have $T\left(w_{j}\right)=b_{1 j} w_{1}+b_{2 j} w_{2}+\cdots+b_{n j} w_{n}$. Prove that, in this situation, there is an invertible matrix $S$ such that $M_{2}=S^{-1} M_{1} S$ and that this change of basis matrix, $S$ does not depend on $T$, but only on the bases $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$.

* 38. Let $W=\operatorname{span}\left\{v_{1}=\left(\begin{array}{c}2 \\ 1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{c}1 \\ 3 \\ 3 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{c}4 \\ 6 \\ 4 \\ 1\end{array}\right)\right\}$ Find a basis $\left\{f_{j}\right\}$ for $W^{\circ}$.

39. Let $M$ and $N$ be subspaces of the finite dimensional vector space $V$.
(a) Prove that $(M+N)^{\circ}=M^{\circ} \cap N^{\circ}$.
(b) Prove that $(M \cap N)^{\circ}=M^{\circ}+N^{\circ}$.

* 40. Prove that linear functionals on subspaces can be extended to the whole space:

That is, suppose $V$ is a finite dimensional vector space and $W$ is a subspace of $V$ and suppose $g$ is a linear functional defined on $W$. Prove that there is a linear functional $f$ defined on all of $V$ for which $f(w)=g(w)$ for all $w$ in the subspace $W$.

* 41. Let $F$ be a field of characteristic zero (that is, in a field where no finite sum of 1's is 0 ) and suppose $V$ is a finite dimensional vector space over $F$. Show that if $v_{1}, v_{2}, \cdots, v_{m}$ is a finite set of non-zero vectors in $V$, there is a linear functional $f$ on $V$ for which $f\left(v_{j}\right) \neq 0$ for $j=1,2, \cdots, m$.
* 42. Let $M$ and $N$ be subspaces of the finite dimensional vector space $V$.
(a) Let $T$ be an isomorphism of $V$ onto the vector space $W$. Prove that $M \subset N$ if and only if $T(M) \subset T(N)$.
(b) Prove that $M \subset N$ implies $N^{\circ} \subset M^{\circ}$.
(c) Prove that $N^{\circ} \subset M^{\circ}$ implies $M \subset N$.

43. Show that, for $n \geq 2$, the trace functional on $n \times n$ matrices is unique in the following sense: If $W$ is the vector space of $n \times n$ matrices over the field $F$ and $f$ is a linear functional on $W$ such that $f(A B)=f(B A)$ for each $A$ and $B$ in $W$, then $f$ is a scalar multiple of the trace function.
