February 13

Definition: Let V be a vector space over the field F. A linear functional on V is a linear transformation from V into F.

Definition: Let A and B be two $n \times n$ matrices with entries in a field F. We say the matrices A and B are similar if there is an $n \times n$ invertible matrix S so that $B=S^{-1} A S$.

Definition: Let A be an $n \times n$ matrix with entries in a field F; as usual, let $a_{j k}$ denote the entry of A in the $j^{\text {th }}$ row and $k^{\text {th }}$ column. The trace of the matrix A, written $\operatorname{tr}(A)$, is the function defined on the vector space of $n \times n$ matrices into the field F by $\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}=\sum_{j=1}^{n} a_{j j}$.

* 33. Let V be the vector space of polynomial functions of \mathbb{R} into \mathbb{R} of degree 2 or less:

$$
p(x)=c_{0}+c_{1} x+c_{2} x^{2} \quad \text { for } c_{0}, c_{1}, \text { and } c_{2} \in \mathbb{R}
$$

Let a and b be two real numbers and let J be the function on V into \mathbb{R} defined by

$$
J(p)=\int_{a}^{b} p(x) d x
$$

Prove that J is a linear functional on V.

* 34. Show that the trace function is a linear functional on the vector space of $n \times n$ matrices with entries in the field F.
** 35. Let A, B, and C be $n \times n$ matrices over the field F.
(a) Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(b) Prove that $\operatorname{tr}(A B C)=\operatorname{tr}(C A B)$.
(c) Give an example of matrices A, B, and C so that $\operatorname{tr}(A B C)$ is not the same as $\operatorname{tr}(B A C)$.
(d) Show that if A and B are similar matrices, then $\operatorname{tr}(A)=\operatorname{tr}(B)$.
* 36. Show that $A B-B A=I$ is impossible for $n \times n$ matrices of real or complex numbers.

