February 13

Definition: Let V be a vector space over the field F. A linear functional on V is a linear transformation from V into F.

Definition: Let A and B be two $n \times n$ matrices with entries in a field F. We say the matrices A and B are similar if there is an $n \times n$ invertible matrix S so that $B = S^{-1}AS$.

Definition: Let A be an $n \times n$ matrix with entries in a field F; as usual, let a_{jk} denote the entry of A in the j^{th} row and k^{th} column. The *trace of the matrix* A, written tr(A), is the function defined on the vector space of $n \times n$ matrices into the field F by $tr(A) = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{j=1}^{n} a_{jj}$.

* 33. Let V be the vector space of polynomial functions of \mathbb{R} into \mathbb{R} of degree 2 or less:

$$p(x) = c_0 + c_1 x + c_2 x^2$$
 for c_0, c_1 , and $c_2 \in \mathbb{R}$

Let a and b be two real numbers and let J be the function on V into \mathbb{R} defined by

$$J(p) = \int_{a}^{b} p(x) \, dx$$

Prove that J is a linear functional on V.

- * 34. Show that the trace function is a linear functional on the vector space of $n \times n$ matrices with entries in the field F.
- ** 35. Let A, B, and C be $n \times n$ matrices over the field F.
 - (a) Prove that tr(AB) = tr(BA).
 - (b) Prove that tr(ABC) = tr(CAB).
 - (c) Give an example of matrices A, B, and C so that tr(ABC) is not the same as tr(BAC).
 - (d) Show that if A and B are similar matrices, then tr(A) = tr(B).

* 36. Show that AB - BA = I is impossible for $n \times n$ matrices of real or complex numbers.