February 11

26. (a) Let $v_{1}=(1,-1), v_{2}=(2,-1)$, and $v_{3}=(-3,2)$. Let $w_{1}=(1,0)$, $w_{2}=(0,1)$, and $w_{3}=(1,1)$. Is there a linear transformation T from \mathbb{R}^{2} into \mathbb{R}^{2} so that $T\left(v_{j}\right)=w_{j}$ for $j=1,2,3$?
(b) Give necessary and sufficient conditions on u_{1}, u_{2}, and u_{3} in \mathbb{R}^{2} so that there is a linear transformation T from \mathbb{R}^{2} into \mathbb{R}^{2} for which $T\left(u_{j}\right)=w_{j}$ for $j=1,2,3$?

* 27. Let V be an n-dimensional vector space over F and let T be a linear transformation for which the range of T and the null space of T are the same subspace.
(a) Prove that n is even.
(b) Give an example of a linear transformation S acting on \mathbb{R}^{4} for which the range of S and the null space of S are spanned by $v_{1}=(1,0,1,-1), v_{2}=(1,1,-1,2)$, and $v_{3}=(3,1,1,0)$.
* 28. Let V be a finite dimensional vector space over the field F and let T be a linear transformation for which the rank of T^{2} and the rank of T are the same.
Prove that the intersection of the range of T and the null space of T is the zero subspace (0).
* 29. If $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}$ where the a_{j} are real numbers, and A is an $n \times n$ real matrix, we define $p(A)$ to be $a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{k} A^{k}$.
(a) What is the dimension of the vector space of 3×3 real matrices?
(b) Prove: for any 3×3 real matrix A, there is a non-zero polynomial p so that $p(A)=0$.

30. For n a positive integer, let T be a linear transformation of the vector space F^{n} into the space F^{m} and let A be the matrix for T with respect to the standard bases for F^{n} and F^{m}.
Let W be the subspace of F^{m} spanned by the columns of A.
State one or two relationships between W and T.

* 31. Let T be the linear operator on \mathbb{R}^{3} defined by

$$
\begin{equation*}
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right) \tag{1}
\end{equation*}
$$

(a) What is the matrix for T in the standard basis?
(b) Find the matrix for T relative to the basis

$$
v_{1}=(1,0,1) \quad v_{2}=(-1,2,1) \quad v_{3}=(2,1,1)
$$

(c) Prove that T is invertible and find an expression for the transformation T^{-1} like the one in Equation (1).
** 32. Let V be an n-dimensional vector space over the field F and let $\mathcal{B}=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be an ordered basis for V.
(a) Let T be the (unique) linear transformation that satisfies $T v_{j}=v_{j+1}$ for $j=$ $1,2, \cdots, n-1$ and $T v_{n}=0$. Find the matrix for T with respect to basis \mathcal{B} above.
(b) Prove that $T^{n}=0$ but T^{n-1} is not the zero transformation.
(c) Let S be an operator on V for which $S^{n}=0$ but $S^{n-1} \neq 0$. Prove that there is an ordered basis \mathcal{B}^{\prime} for V such that the matrix for S with respect to the basis \mathcal{B}^{\prime} is the same as the matrix from part (a) of this exercise.

