January 30

18. Consider the homogeneous system of equations

$$(*) \begin{cases} 2x_1 - x_2 + \frac{4}{3}x_3 - x_4 &= 0\\ x_1 &+ \frac{2}{3}x_3 &- x_5 &= 0\\ 9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 &= 0 \end{cases}$$

Let W be the subspace of \mathbb{R}^5 consisting of those vectors that are solutions of system (*). Find a basis for W.

- * 19. Let W_1 and W_2 be subspaces of the vector space \mathcal{V} such that their set theoretic union, $W_1 \cup W_2$, is a subspace of \mathcal{V} . Prove that either $W_1 \subset W_2$ or $W_2 \subset W_1$.
- * 20. Let M_1 and M_2 be subspaces of the vector space \mathcal{V} such that $M_1 + M_2 = \mathcal{V}$ and $M_1 \cap M_2 = (0)$. Prove that every vector v in \mathcal{V} can be written as $u_1 + u_2 = v$ where u_1 is a vector in M_1 and u_2 is a vector in M_2 and that u_1 and u_2 are the only vectors in M_1 and M_2 , respectively, for which this is true.
- * 21. Let \mathcal{V} be the vector space of 2×2 matrices over the field F. Find a basis for \mathcal{V} consisting of matrices A_1, A_2, A_3, A_4 such that $A_j^2 = A_j$ for each of j = 1, 2, 3, and 4.
- **22.** Let A be an $m \times n$ matrix with m < n. Show that the system of equations AX = 0 has a non-trivial solution.
- * 23. Find a homogeneous system of equations such that subspace of solutions of the system is spanned by u = (-1, 0, 1, 2), v = (3, 4, -2, 5), and w = (1, 4, 0, 9).
- * 24. Show that the vectors $z_1 = (1, 0, -i)$, $z_2 = (1 + i, 1 i, 1)$, and $z_3 = (i, i, i)$ comprise a basis for \mathbb{C}^3 and write the vector (a, b, c) as a linear combination of z_1, z_2 , and z_3 .
- ** 25. Let V be the subspace of \mathbb{R}^5 spanned by the rows of the matrix

$$A = \begin{pmatrix} 3 & 20 & 0 & 9 & 0 \\ 1 & 7 & -1 & -2 & -1 \\ 2 & 14 & 0 & 6 & 1 \\ 6 & 42 & -1 & 13 & 0 \end{pmatrix}$$

- (a) Find a basis for V.
- (b) Find a matrix B with 5 rows so that X is in V if and only if XB = 0.