January 23

* 10. Let $A=\left(\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 2 \\ 1 & -1 & 0 & -1\end{array}\right) \quad$ let $\quad X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \quad$ and let $\quad Y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right)$
where x_{1}, x_{2}, x_{3}, and x_{4} and y_{1}, y_{2}, y_{3}, and y_{4} are variables whose values are real numbers. Find conditions on Y that ensure the equation $A X=Y$ has solutions. (See problem 4.)
* 11. Let $C=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 matrix with real entries a, b, c, and d. Show that there are 2×2 real matrices A and B so that $C=A B-B A$ if and only if $a+d=0$.

12. Use partitioned (block) matrices to show that if A is an $m \times n$ matrix and B is an $n \times p$ matrix whose $k^{\text {th }}$ column is zero, then the $k^{\text {th }}$ column of $A B$ is zero.

* 13. Let \mathcal{F} be a field. Let C be the $m \times p$ matrix $C=A B$ where A and B are, respectively, $m \times n$ and $n \times p$ matrices with entries in the field \mathcal{F}.

Prove that the columns of C are linear combinations of the columns of A, that is, specifically, if C_{1}, C_{2}, \cdots, and C_{p} are the columns of C, and A_{1}, A_{2}, \cdots, and A_{n} are the columns of A, then there are coefficients $\left\{\beta_{i j}\right\}$, each in the field \mathcal{F}, so that for each i,

$$
C_{i}=\sum_{j=1}^{n} \beta_{i j} A_{j}
$$

* 14. An $n \times n$ matrix A is said to be an upper triangular if every entry below the main diagonal is 0 . Prove that such a matrix A is invertible if and only if every entry on the main diagonal is non-zero.

15. Let A be an $n \times n$ matrix. Prove:
(a) If A is invertible and B is an $n \times n$ matrix for which $A B=0$, then $B=0$.
(b) If A is not invertible, there is B a non-zero $n \times n$ matrix for which $A B=0$.
** 16. Suppose A is a square matrix with entries in a field F partitioned as

$$
A=\left(\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right)
$$

where X and Z are square matrices and 0 is a zero matrix.
(a) Find necessary and sufficient conditions on X, Y, and Z so that A is invertible and then find formulas for P, Q, R, and S so that A^{-1} is the block matrix

$$
\left(\begin{array}{ll}
P & Q \\
R & S
\end{array}\right)
$$

(b) Use your formula to find A^{-1}

$$
\text { when } X=\left(\begin{array}{lll}
1 & -1 & 2 \\
2 & -3 & 3 \\
3 & -2 & 5
\end{array}\right), \quad Y=\left(\begin{array}{rr}
1 & -1 \\
0 & 1 \\
-3 & 1
\end{array}\right), \quad \text { and } Z=\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right)
$$

17. Suppose A is an $n \times n$ real matrix, u and v are real column and row vectors, respectively, and a is a real number. The matrix

$$
X=\left(\begin{array}{cc}
A & u \\
v & a
\end{array}\right)
$$

is an $(n+1) \times(n+1)$ matrix called a bordered matrix.
(a) Show that if A is invertible and $a-v A^{-1} u \neq 0$ then X is invertible by writing

$$
X^{-1}=\left(\begin{array}{ll}
B & p \\
q & b
\end{array}\right)
$$

and finding B, p, q, and b in terms of A, u, v, and a.
(b) Check the formula you found above by using it to find the inverse of

$$
X=\left(\begin{array}{rrr}
1 & -2 & 2 \\
-1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

