- **63.** (0708) Let \mathcal{V} be a finite dimensional vector space over the field \mathbb{F} . Show that the vectors v_1, v_2, \dots, v_k are a basis for \mathcal{V} if and only if, for any non-zero linear functional f in the dual of \mathcal{V} , there is v_j with $1 \leq j \leq k$ for which $f(v_j) \neq 0$.
- **64.** (0708) Suppose A and B are complex $n \times n$ matrices for which AB = 0. Prove that $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B) \leq n$.
- 65. (1108) Let S be a linear transformation on the finite dimensional vector space \mathcal{V} over the field \mathbb{F} that satisfies $S^m = S$ for some positive integer m > 1.
 - (a) Letting $\mathcal{N}(S)$ and $\mathcal{R}(S)$ be the nullspace and range of S, prove that $\mathcal{N}(S) \cap \mathcal{R}(S) = (0)$
 - (b) Prove that $\mathcal{N}(S) = \mathcal{N}(S^k)$ for every positive integer k.
- **66.** An $n \times n$ matrix N over a field \mathbb{F} is called a nilpotent matrix of order k if $N^k = 0$, but $N^{k-1} \neq 0$. For example, $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

 $\left(\begin{array}{rrrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \text{and} \quad \left(\begin{array}{rrrr}
1 & 1 \\
-1 & -1
\end{array}\right)$

are nilpotent matrices of order 3 and 2 respectively. Let N be an $n \times n$ matrix that is nilpotent of order 4. Find the inverse of $I + 2N + N^2 - 3N^3$.

- **67.** We have seen that for \mathcal{V} a finite dimensional vector space over the field \mathbb{F} , T a linear transformation on \mathcal{V} , and v a vector in \mathcal{V} , then $J = \{p \in \mathbb{F}[x] : p(T)v = 0\}$ is an ideal in the ring of polynomial over \mathbb{F} .
 - (a) Suppose \mathcal{V} is a 3-dimensional vector space over the field \mathbb{F} , v is a vector in \mathcal{V} , and T is a linear transformation on \mathcal{V} . Prove that there is a polynomial, p, of degree 3 for which p(T)v = 0.

(b) Let
$$D = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 and let $v = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$. Show that there is no (monic)

polynomial of degree 2 in the ideal $K = \{q \in \mathbb{R}[x] : q(D)v = 0\}.$

(c) Find a monic polynomial of degree 3 in the ideal K in part (b) and explain why this means that the polynomial you just found is the monic generator of K.

(d) Let
$$C = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
. Choose two linearly independent vectors u and w in \mathbb{R}^3 .

Let $K_u = \{q \in \mathbb{R}[x] : q(C)u = 0\}$ and $K_w = \{q \in \mathbb{R}[x] : q(C)w = 0\}$ be the ideals in $\mathbb{R}[x]$ associated with C and u and w. For each of the ideals K_u and K_w , find a monic polynomial of degree 3 in the ideal.