Mock Test 1

63. (0708) Let \mathcal{V} be a finite dimensional vector space over the field \mathbb{F}. Show that the vectors $v_{1}, v_{2}, \cdots, v_{k}$ are a basis for \mathcal{V} if and only if, for any non-zero linear functional f in the dual of \mathcal{V}, there is v_{j} with $1 \leq j \leq k$ for which $f\left(v_{j}\right) \neq 0$.
64. (0708) Suppose A and B are complex $n \times n$ matrices for which $A B=0$. Prove that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B) \leq n$.
65. (1108) Let S be a linear transformation on the finite dimensional vector space \mathcal{V} over the field \mathbb{F} that satisfies $S^{m}=S$ for some positive integer $m>1$.
(a) Letting $\mathcal{N}(S)$ and $\mathcal{R}(S)$ be the nullspace and range of S, prove that $\mathcal{N}(S) \cap \mathcal{R}(S)=$
(b) Prove that $\mathcal{N}(S)=\mathcal{N}\left(S^{k}\right)$ for every positive integer k.
66. An $n \times n$ matrix N over a field \mathbb{F} is called a nilpotent matrix of order k if $N^{k}=0$, but $N^{k-1} \neq 0$. For example,

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right)
$$

are nilpotent matrices of order 3 and 2 respectively. Let N be an $n \times n$ matrix that is nilpotent of order 4. Find the inverse of $I+2 N+N^{2}-3 N^{3}$.
67. We have seen that for \mathcal{V} a finite dimensional vector space over the field \mathbb{F}, T a linear transformation on \mathcal{V}, and v a vector in \mathcal{V}, then $J=\{p \in \mathbb{F}[x]: p(T) v=0\}$ is an ideal in the ring of polynomial over \mathbb{F}.
(a) Suppose \mathcal{V} is a 3 -dimensional vector space over the field \mathbb{F}, v is a vector in \mathcal{V}, and T is a linear transformation on \mathcal{V}. Prove that there is a polynomial, p, of degree 3 for which $p(T) v=0$.
(b) Let $D=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$ and let $v=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$. Show that there is no (monic) polynomial of degree 2 in the ideal $K=\{q \in \mathbb{R}[x]: q(D) v=0\}$.
(c) Find a monic polynomial of degree 3 in the ideal K in part (b) and explain why this means that the polynomial you just found is the monic generator of K.
(d) Let $C=\left(\begin{array}{rrr}1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right)$. Choose two linearly independent vectors u and w in \mathbb{R}^{3}. Let $K_{u}=\{q \in \mathbb{R}[x]: q(C) u=0\}$ and $K_{w}=\{q \in \mathbb{R}[x]: q(C) w=0\}$ be the ideals in $\mathbb{R}[x]$ associated with C and u and w. For each of the ideals K_{u} and K_{w}, find a monic polynomial of degree 3 in the ideal.

