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⇤ 60. Let n be a positive integer and let a1, a2, a3, · · ·, an be scalars in the field F .

Prove that a Vandermonde matrix
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⇤ 61. Prove that an upper triangular n⇥ n matrix has determinant the product
of the diagonal elements.

⇤ 62.
(a) Write out the 24 permutations of the integers 1 to 4 and classify each permutation

as odd or even.

(b) We know that det
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= ad� bc.

Use the signs of the permutations given in part (a) to write the similar formula for
the determinant of the 4 ⇥ 4 matrix A, below, in terms of sums of signed products
of entries:
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