February 23 to 28 The following problems will not be collected but might be helpful in preparing for the midterm

53. Let F be a field and let f be in F^{∞} , that is, f is a formal power series with coefficients in F. In analogy with evaluating polynomials at scalars from F, for f in F^{∞} and a in F, define f(a) in F^{∞} by:

For
$$f = (f_0, f_1, f_2, f_3, \cdots)$$
 let $f(a) = (f_0, f_1a, f_2a^2, f_3a^3, f_4a^4, \cdots)$

In F^{∞} for F a subfield of \mathbb{C} , let exp and, for a in F, exp(a) be the formal power series $exp = (1, 1, (2!)^{-1}, (3!)^{-1}, \cdots)$ and $exp(a) = (1, a, a^2/2!, a^3/3!, a^4/4!, \cdots)$

Using the definition of products in F^{∞} and the binomial theorem, prove that, for a and b in F,

$$exp(a)exp(b) = exp(a+b)$$

- **54.** Let F be a field and let F[x] be the algebra of polynomials over F.
 - (a) Prove: If $a \neq 0$ and b are elements of F, the polynomials 1, ax + b, $(ax + b)^2$, $(ax + b)^3$, ..., form a basis for F[x].
 - (b) More generally, show that if h is a polynomial in F of degree at least 1 then the mapping T(f) = f(h) is a linear transformation of F[x] into itself.
 - (c) Show that the transformation T in part (b) is an isomorphism of F[x] onto F[x] if and only if h has degree 1.

55. Let F be a field and let F[x] be the algebra of polynomials over F.

- (a) Prove that the intersection of any number of ideals in F[x] is also an ideal in F[x].
- (b) Let f_1, f_2, \dots, f_k be polynomials in F[x] and let J be the ideal generated by $\{f_1, f_2, \dots, f_k\}$. Show that J is the intersection of all of the ideals in F[x] that contain all of the f_j for $j = 1, \dots, k$
- 56. Let f and g be monic polynomials over the field \mathbb{C} . Assume the Fundamental Theorem of Algebra to do this exercise.
 - (a) Prove that the g.c.d. of f and g is 1 if and only if f and g have no common roots.
 - (b) Let f be of degree k and $f(x) = (x c_1)(x c_2) \cdots (x c_k)$. Prove: the c_j are distinct complex numbers if and only if f and Df have no common roots. (Here D is the formal derivative transformation on polynomials, which you may assume satisfies the product rule.)
 - (c) Find monic real polynomials p and q, each of degree three, that have no common (real) roots but the g.c.d. of p and q over \mathbb{R} is not 1.
- **57.** Do *NOT* use determinants to do this exercise! An $m \times n$ matrix $A = (a_{ij})$ is said to be *lower triangular* if $a_{ij} = 0$ for i < j and *upper triangular* if $a_{ij} = 0$ for i > j.
 - (a) Prove: If A is a lower triangular $k \times m$ matrix and B is a lower triangular $m \times n$ matrix, then AB is a lower triangular $k \times n$ matrix.
 - (b) Prove that a lower triangular $n \times n$ matrix A is invertible if and only if the diagonal entries of A are all non-zero.
 - (c) Show that if A is a lower triangular $n \times n$ matrix that is invertible, then A^{-1} is also a lower triangular matrix.

58. An $n \times n$ matrix $T = (t_{ij})$ is said to be a *Toeplitz matrix* if $t_{ij} = t_{i+1,j+1}$ for $1 \le i, j < n$.

- (a) Prove: If S and T are a lower triangular $n \times n$ Toeplitz matrices, then ST is a lower triangular Toeplitz matrix also.
- (b) Give an example to show that if S and T are both $n \times n$ Toeplitz matrices, then it is not necessarily the case that ST is a Toeplitz matrix.
- (c) Prove: If $T = (t_{ij})$ is a lower triangular $n \times n$ Toeplitz matrix with $t_{11} \neq 0$, then T is invertible and T^{-1} is also a Toeplitz matrix.
- (d) Let T be the 4×4 Toeplitz matrix with $t_{1,1} = 1$, $t_{2,1} = -2$, and $t_{3,1} = 1$ with $t_{4,1} = t_{1,2} = t_{1,3} = t_{1,4} = 0$. Find T^{-1} .
- (e) Let T be the $n \times n$ Toeplitz matrix with $t_{1,1} = 1$, $t_{2,1} = -2$, and $t_{3,1} = 1$ and $t_{i,j} = 0$ for $i j \neq 0, 1$, or 2. Make a conjecture for T^{-1} . Can you prove your conjecture?
- **59.** An $n \times n$ real matrix $A = (a_{ij})$ is said to be *symmetric* if $a_{ij} = a_{ji}$ for $i, j = 1, \dots, n$, that is, if $A^t = A$. For this problem, suppose A and B are symmetric $n \times n$ real matrices.
 - (a) Prove: If A and B commute, that is, AB = BA, then AB is also a symmetric matrix.
 - (b) Give an example of two symmetric real matrices whose product is not symmetric.
 - (c) Prove: If A is a real $n \times n$ symmetric matrix that is invertible, then A^{-1} is also symmetric.