February 23 to 28 The following problems will not be collected but might be helpful in preparing for the midterm
53. Let F be a field and let f be in F^{∞}, that is, f is a formal power series with coefficients in F. In analogy with evaluating polynomials at scalars from F, for f in F^{∞} and a in F, define $f(a)$ in F^{∞} by:

$$
\text { For } f=\left(f_{0}, f_{1}, f_{2}, f_{3}, \cdots\right) \quad \text { let } \quad f(a)=\left(f_{0}, f_{1} a, f_{2} a^{2}, f_{3} a^{3}, f_{4} a^{4}, \cdots\right)
$$

In F^{∞} for F a subfield of \mathbb{C}, let \exp and, for a in $F, \exp (a)$ be the formal power series

$$
\exp =\left(1,1,(2!)^{-1},(3!)^{-1}, \cdots\right) \text { and } \exp (a)=\left(1, a, a^{2} / 2!, a^{3} / 3!, a^{4} / 4!, \cdots\right)
$$

Using the definition of products in F^{∞} and the binomial theorem, prove that, for a and b in F,

$$
\exp (a) \exp (b)=\exp (a+b)
$$

54. Let F be a field and let $F[x]$ be the algebra of polynomials over F.
(a) Prove: If $a \neq 0$ and b are elements of F, the polynomials $1, a x+b,(a x+b)^{2}$, $(a x+b)^{3}, \cdots$, form a basis for $F[x]$.
(b) More generally, show that if h is a polynomial in F of degree at least 1 then the mapping $T(f)=f(h)$ is a linear transformation of $F[x]$ into itself.
(c) Show that the transformation T in part (b) is an isomorphism of $F[x]$ onto $F[x]$ if and only if h has degree 1 .
55. Let F be a field and let $F[x]$ be the algebra of polynomials over F.
(a) Prove that the intersection of any number of ideals in $F[x]$ is also an ideal in $F[x]$.
(b) Let $f_{1}, f_{2}, \cdots, f_{k}$ be polynomials in $F[x]$ and let J be the ideal generated by $\left\{f_{1}, f_{2}, \cdots, f_{k}\right\}$. Show that J is the intersection of all of the ideals in $F[x]$ that contain all of the f_{j} for $j=1, \cdots, k$
56. Let f and g be monic polynomials over the field \mathbb{C}. Assume the Fundamental Theorem of Algebra to do this exercise.
(a) Prove that the g.c.d. of f and g is 1 if and only if f and g have no common roots.
(b) Let f be of degree k and $f(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{k}\right)$. Prove: the c_{j} are distinct complex numbers if and only if f and $D f$ have no common roots. (Here D is the formal derivative transformation on polynomials, which you may assume satisfies the product rule.)
(c) Find monic real polynomials p and q, each of degree three, that have no common (real) roots but the g.c.d. of p and q over \mathbb{R} is not 1 .
57. Do NOT use determinants to do this exercise! An $m \times n$ matrix $A=\left(a_{i j}\right)$ is said to be lower triangular if $a_{i j}=0$ for $i<j$ and upper triangular if $a_{i j}=0$ for $i>j$.
(a) Prove: If A is a lower triangular $k \times m$ matrix and B is a lower triangular $m \times n$ matrix, then $A B$ is a lower triangular $k \times n$ matrix.
(b) Prove that a lower triangular $n \times n$ matrix A is invertible if and only if the diagonal entries of A are all non-zero.
(c) Show that if A is a lower triangular $n \times n$ matrix that is invertible, then A^{-1} is also a lower triangular matrix.
58. An $n \times n$ matrix $T=\left(t_{i j}\right)$ is said to be a Toeplitz matrix if $t_{i j}=t_{i+1, j+1}$ for $1 \leq i, j<n$.
(a) Prove: If S and T are a lower triangular $n \times n$ Toeplitz matrices, then $S T$ is a lower triangular Toeplitz matrix also.
(b) Give an example to show that if S and T are both $n \times n$ Toeplitz matrices, then it is not necessarily the case that $S T$ is a Toeplitz matrix.
(c) Prove: If $T=\left(t_{i j}\right)$ is a lower triangular $n \times n$ Toeplitz matrix with $t_{11} \neq 0$, then T is invertible and T^{-1} is also a Toeplitz matrix.
(d) Let T be the 4×4 Toeplitz matrix with $t_{1,1}=1$, $t_{2,1}=-2$, and $t_{3,1}=1$ with $t_{4,1}=t_{1,2}=t_{1,3}=t_{1,4}=0$. Find T^{-1}.
(e) Let T be the $n \times n$ Toeplitz matrix with $t_{1,1}=1, t_{2,1}=-2$, and $t_{3,1}=1$ and $t_{i, j}=0$ for $i-j \neq 0,1$, or 2 . Make a conjecture for T^{-1}. Can you prove your conjecture?
59. An $n \times n$ real matrix $A=\left(a_{i j}\right)$ is said to be symmetric if $a_{i j}=a_{j i}$ for $i, j=1, \cdots, n$, that is, if $A^{t}=A$. For this problem, suppose A and B are symmetric $n \times n$ real matrices.
(a) Prove: If A and B commute, that is, $A B=B A$, then $A B$ is also a symmetric matrix.
(b) Give an example of two symmetric real matrices whose product is not symmetric.
(c) Prove: If A is a real $n \times n$ symmetric matrix that is invertible, then A^{-1} is also symmetric.
