February 22 NO CLASS on February 22: Put solutions into Cowen's mailbox in LD 270

- *** 46.**
 - (a) Let f be the polynomial $f(x) = x^3 4x^2 + 3x 5$. Let B be a 3×3 invertible matrix that satisfies f(B) = 0. Find a polynomial g so that $B^{-1} = g(B)$. (Hint: rewrite the equation f(B) = 0 in such a way as to get I alone on the right side of the equation.)
 - (b) In Exercise 29, it was shown that every 3×3 matrix, A, satisfies a polynomial equation p(A) = 0 for some non-zero polynomial. The same can be done for $n \times n$ matrices: If A is an $n \times n$ matrix, there is a non-zero polynomial p for which p(A) = 0. Assuming that result has been proved, show that for every invertible $n \times n$ matrix A, there is a polynomial q so that $A^{-1} = q(A)$.
- * 47. Use the Lagrange interpolation formula to find a polynomial f with real coefficients and degree no more than 3 such that f(-1) = -6, f(0) = 2, f(1) = -2, and f(2) = 6.
- * 48. Let n be a positive integer and F a field. Suppose A is an $n \times n$ matrix over F and P is an invertible $n \times n$ matrix over F. Prove: if f is any polynomial over F, then

 $f(P^{-1}AP) = P^{-1}f(A)P$

- * 49. Let \mathbb{Q} the field of rational numbers. Determine which of the following are ideals in $\mathbb{Q}[x]$. If the set is an ideal, find a monic generator. If it is not an ideal, explain why it is not.
 - (a) All polynomials with even degree.
 - (b) All polynomials f with degree $(f) \ge 5$.
 - (c) All polynomials f for which f(2) = f(4) = 0.
 - (d) All polynomials f for which f(2) f(4) = 0.
 - (e) The range of the linear transformation $T(f) = (5x^2 + 2)f$.
- * 50. Find the g.c.d. of each of the following pairs of polynomials.
 - (a) $3x^4 + 8x^2 3$ and $x^3 + 2x^2 + 3x + 6$.
 - (b) $x^4 2x^3 2x^2 2x 3$ and $x^3 + 6x^2 + 7x + 1$.
- * 51. Let F be a subfield of the complex numbers.
 - (a) Let A be an $n \times n$ matrix over F. Prove: the set of polynomials in F[x] for which f(A) = 0 is an ideal.
 - (b) Find the monic generator of the ideal of polynomials in F[x] for which f(A) = 0 when

$$A = \left(\begin{array}{cc} 1 & -2\\ 0 & 3 \end{array}\right)$$

* 52. Let p be a monic polynomial over the field F and let h be the g.c.d. of the polynomials f and g in F[x]. Find the g.c.d. of the polynomials pf and pg.