February 22 NO CLASS on February 22: Put solutions into Cowen's mailbox in LD 270

* 46.

(a) Let f be the polynomial $f(x)=x^{3}-4 x^{2}+3 x-5$. Let B be a 3×3 invertible matrix that satisfies $f(B)=0$. Find a polynomial g so that $B^{-1}=g(B)$.
(Hint: rewrite the equation $f(B)=0$ in such a way as to get I alone on the right side of the equation.)
(b) In Exercise 29, it was shown that every 3×3 matrix, A, satisfies a polynomial equation $p(A)=0$ for some non-zero polynomial. The same can be done for $n \times n$ matrices: If A is an $n \times n$ matrix, there is a non-zero polynomial p for which $p(A)=0$. Assuming that result has been proved, show that for every invertible $n \times n$ matrix A, there is a polynomial q so that $A^{-1}=q(A)$.

* 47. Use the Lagrange interpolation formula to find a polynomial f with real coefficients and degree no more than 3 such that $f(-1)=-6, f(0)=2, f(1)=-2$, and $f(2)=6$.
* 48. Let n be a positive integer and F a field. Suppose A is an $n \times n$ matrix over F and P is an invertible $n \times n$ matrix over F. Prove: if f is any polynomial over F, then

$$
f\left(P^{-1} A P\right)=P^{-1} f(A) P
$$

* 49. Let \mathbb{Q} the field of rational numbers. Determine which of the following are ideals in $\mathbb{Q}[x]$. If the set is an ideal, find a monic generator. If it is not an ideal, explain why it is not.
(a) All polynomials with even degree.
(b) All polynomials f with $\operatorname{degree}(f) \geq 5$.
(c) All polynomials f for which $f(2)=f(4)=0$.
(d) All polynomials f for which $f(2)-f(4)=0$.
(e) The range of the linear transformation $T(f)=\left(5 x^{2}+2\right) f$.
* 50. Find the g.c.d. of each of the following pairs of polynomials.
(a) $3 x^{4}+8 x^{2}-3$ and $x^{3}+2 x^{2}+3 x+6$.
(b) $x^{4}-2 x^{3}-2 x^{2}-2 x-3$ and $x^{3}+6 x^{2}+7 x+1$.
* 51. Let F be a subfield of the complex numbers.
(a) Let A be an $n \times n$ matrix over F.

Prove: the set of polynomials in $F[x]$ for which $f(A)=0$ is an ideal.
(b) Find the monic generator of the ideal of polynomials in $F[x]$ for which $f(A)=0$ when

$$
A=\left(\begin{array}{rr}
1 & -2 \\
0 & 3
\end{array}\right)
$$

* 52. Let p be a monic polynomial over the field F and let h be the g.c.d. of the polynomials f and g in $F[x]$. Find the g.c.d. of the polynomials $p f$ and $p g$.

