February 15

* **33.** Show that if A and B are $n \times n$ matrices over the field F, then tr(AB) = tr(BA). Using this, show that similar matrices have the same trace. (Note: A and B are *similar* if there is an invertible matrix S so that $B = S^{-1}AS$.)

- **34.** Show that AB BA = I is impossible for $n \times n$ matrices of complex numbers. Can AB - BA = I when A and B are 3×3 matrices over the field F_3 ?
- * 35. Let V be the vector space of polynomial functions of \mathbb{R} into \mathbb{R} of degree 2 or less:

$$p(x) = c_0 + c_1 x + c_2 x^2$$
 for c_0, c_1 , and $c_2 \in \mathbb{R}$

Define linear functionals on V by

$$f_1(p) = \int_0^1 p(x) \, dx \quad f_2(p) = \int_0^2 p(x) \, dx \quad f_3(p) = \int_{-1}^0 p(x) \, dx$$

Show that $\{f_1, f_2, f_3\}$ is a basis for V^* by exhibiting the basis of V for which these linear functionals form the dual basis for.

* **36.**
Let
$$W = \operatorname{span} \left\{ v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 4 \\ 6 \\ 4 \\ 1 \end{pmatrix} \right\}$$
 Find a basis $\{f_j\}$ for W° .

** **37.** Let M and N be subspaces of the finite dimensional vector space V.

- (a) Prove that $(M+N)^{\circ} = M^{\circ} \cap N^{\circ}$.
- (b) Prove that $(M \cap N)^{\circ} = M^{\circ} + N^{\circ}$.
- * 38. Prove that linear functionals on subspaces can be extended to the whole space: That is, suppose V is a finite dimensional vector space and W is a subspace of V and suppose g is a linear functional defined on W. Prove that there is a linear functional f defined on all of V for which f(w) = g(w) for all w in the subspace W.
- * **39.** Let *F* be a field of characteristic zero (that is, in a field where no finite sum of 1's is 0) and suppose *V* is a finite dimensional vector space over *F*. Show that if v_1, v_2, \dots, v_m is a finite set of non-zero vectors in *V*, there is a linear functional functional *f* on *V* for which $f(v_i) \neq 0$ for $j = 1, 2, \dots, m$.
- ** 40. Let M and N be subspaces of the finite dimensional vector space V.
 - (a) Let T be an isomorphism of V onto the vector space W. Prove that $M \subset N$ if and only if $T(M) \subset T(N)$.
 - (b) Prove that $M \subset N$ implies $N^{\circ} \subset M^{\circ}$.
 - (c) Prove that $N^{\circ} \subset M^{\circ}$ implies $M \subset N$.
- **41.** Show that the trace functional on $n \times n$ matrices is unique in the following sense: If W is the vector space of $n \times n$ matrices over the field F and f is a linear functional on W such that f(AB) = f(BA) for each A and B in W, then f is a scalar multiple of the trace function.

Definition: Let V be a real or complex vector space and let K be a non-empty set in V. The set K is convex if for each p and q in K and each real number t with $0 \le t \le 1$, the point tp + (1-t)q is also in K.

42. Suppose V is a real or complex vector space and suppose, for some positive integer ℓ , the sets K_1, K_2, \dots , and K_ℓ are convex sets in V.

Prove: If $\bigcap_{j=1}^{\ell} K_j$ is non-empty, then it is a convex set.

43. Suppose V is a real or complex vector space and suppose the set K is a convex subset of V. Let f be the function defined for x in V by $f(x) = v_0 + Tx$ for v_0 a vector in V and T a linear transformation of V into V. (The function f is an example of an *affine map.*) Prove that f(K) is a convex set in V also.

Definition: Let f be a non-zero linear functional on \mathbb{R}^n and let c be a real number. The set $H = \{x \in \mathbb{R}^n : f(x) \leq c\}$ is called a *closed half-space of* \mathbb{R}^n . If ℓ is a positive integer and $H_1, H_2, \dots,$ and H_ℓ are closed half spaces in \mathbb{R}^n , then the set $\bigcap_{j=1}^{\ell} H_j$ is called a *closed polyhedron* in \mathbb{R}^n if it is non-empty.

- 44. Prove that a closed polyhedron in \mathbb{R}^n is a convex set.
- **45.** Let K be a closed polyhedron in \mathbb{R}^n , let g be a linear functional on \mathbb{R}^n , and let r be a real number. Prove that $K \cap \{x \in \mathbb{R}^n : g(x) = r\}$ is either empty or a convex set.