February 15

* 33. Show that if A and B are $n \times n$ matrices over the field F, then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Using this, show that similar matrices have the same trace. (Note: A and B are similar if there is an invertible matrix S so that $B=S^{-1} A S$.)

34. Show that $A B-B A=I$ is impossible for $n \times n$ matrices of complex numbers.

Can $A B-B A=I$ when A and B are 3×3 matrices over the field F_{3} ?

* 35. Let V be the vector space of polynomial functions of \mathbb{R} into \mathbb{R} of degree 2 or less:

$$
p(x)=c_{0}+c_{1} x+c_{2} x^{2} \quad \text { for } \quad c_{0}, c_{1}, \text { and } c_{2} \in \mathbb{R}
$$

Define linear functionals on V by

$$
f_{1}(p)=\int_{0}^{1} p(x) d x \quad f_{2}(p)=\int_{0}^{2} p(x) d x \quad f_{3}(p)=\int_{-1}^{0} p(x) d x
$$

Show that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis for V^{*} by exhibiting the basis of V for which these linear functionals form the dual basis for.

* 36.

$$
\text { Let } W=\operatorname{span}\left\{v_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
0 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
1 \\
3 \\
3 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
4 \\
6 \\
4 \\
1
\end{array}\right)\right\} \quad \text { Find a basis }\left\{f_{j}\right\} \text { for } W^{\circ} \text {. }
$$

*37. Let M and N be subspaces of the finite dimensional vector space V.
(a) Prove that $(M+N)^{\circ}=M^{\circ} \cap N^{\circ}$.
(b) Prove that $(M \cap N)^{\circ}=M^{\circ}+N^{\circ}$.

* 38. Prove that linear functionals on subspaces can be extended to the whole space: That is, suppose V is a finite dimensional vector space and W is a subspace of V and suppose g is a linear functional defined on W. Prove that there is a linear functional f defined on all of V for which $f(w)=g(w)$ for all w in the subspace W.
* 39. Let F be a field of characteristic zero (that is, in a field where no finite sum of 1's is 0) and suppose V is a finite dimensional vector space over F. Show that if $v_{1}, v_{2}, \cdots, v_{m}$ is a finite set of non-zero vectors in V, there is a linear functional functional f on V for which $f\left(v_{j}\right) \neq 0$ for $j=1,2, \cdots, m$.
** 40. Let M and N be subspaces of the finite dimensional vector space V.
(a) Let T be an isomorphism of V onto the vector space W. Prove that $M \subset N$ if and only if $T(M) \subset T(N)$.
(b) Prove that $M \subset N$ implies $N^{\circ} \subset M^{\circ}$.
(c) Prove that $N^{\circ} \subset M^{\circ}$ implies $M \subset N$.

41. Show that the trace functional on $n \times n$ matrices is unique in the following sense:

If W is the vector space of $n \times n$ matrices over the field F and f is a linear functional on W such that $f(A B)=f(B A)$ for each A and B in W, then f is a scalar multiple of the trace function.

Definition: Let V be a real or complex vector space and let K be a non-empty set in V. The set K is convex if for each p and q in K and each real number t with $0 \leq t \leq 1$, the point $t p+(1-t) q$ is also in K.
42. Suppose V is a real or complex vector space and suppose, for some positive integer ℓ, the sets K_{1}, K_{2}, \cdots, and K_{ℓ} are convex sets in V.

Prove: If $\bigcap_{j=1}^{\ell} K_{j}$ is non-empty, then it is a convex set.
43. Suppose V is a real or complex vector space and suppose the set K is a convex subset of V. Let f be the function defined for x in V by $f(x)=v_{0}+T x$ for v_{0} a vector in V and T a linear transformation of V into V. (The function f is an example of an affine map.) Prove that $f(K)$ is a convex set in V also.

Definition: Let f be a non-zero linear functional on \mathbb{R}^{n} and let c be a real number. The set $H=\left\{x \in \mathbb{R}^{n}: f(x) \leq c\right\}$ is called a closed half-space of \mathbb{R}^{n}. If ℓ is a positive integer and H_{1}, H_{2}, \cdots, and H_{ℓ} are closed half spaces in \mathbb{R}^{n}, then the set $\bigcap_{j=1}^{\ell} H_{j}$ is called a closed polyhedron in \mathbb{R}^{n} if it is non-empty.
44. Prove that a closed polyhedron in \mathbb{R}^{n} is a convex set.
45. Let K be a closed polyhedron in \mathbb{R}^{n}, let g be a linear functional on \mathbb{R}^{n}, and let r be a real number. Prove that $K \cap\left\{x \in \mathbb{R}^{n}: g(x)=r\right\}$ is either empty or a convex set.

