February 8

- * 26. (a) Let $v_1 = (1, -1)$, $v_2 = (2, -1)$, and $v_3 = (-3, 2)$. Let $w_1 = (1, 0)$, $w_2 = (0, 1)$, and $w_3 = (1, 1)$. Is there a linear transformation T from \mathbb{R}^2 into \mathbb{R}^2 so that $T(v_j) = w_j$ for j = 1, 2, 3?
 - (b) Give necessary and sufficient conditions on u_1 , u_2 , and u_3 in \mathbb{R}^2 so that there is a linear transformation T from \mathbb{R}^2 into \mathbb{R}^2 for which $T(u_j) = w_j$ for j = 1, 2, 3?
- * 27. Let V be an n-dimensional vector space over F and let T be a linear transformation for which the range of T and the null space of T are the same subspace.
 - (a) Prove that n is even.
 - (b) Give an example of a linear transformation S acting on \mathbb{R}^4 for which the range of S and the null space of S are spanned by $v_1 = (1, 0, 1, -1)$, $v_1 = (1, 1, -1, 2)$, and $v_3 = (3, 1, 1, 0)$.
- * 28. Let V be a finite dimensional vector space over the field F and let T be a linear transformation for which the rank of T^2 and the rank of T are the same. Prove that the intersection of the range of T and the null space of T is the zero subspace (0).
- ** **29.** If $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$ where the a_j are real numbers, and A is an $n \times n$ real matrix, we define p(A) to be $a_0I + a_1A + a_2A^2 + \dots + a_kA^k$.
 - (a) What is the dimension of the vector space of 3×3 real matrices?
 - (b) Prove that for any 3×3 real matrix A, there is a polynomial p so that p(A) = 0.
- * 30. For n a positive integer, let T be a linear transformation of the vector space F^n into the space F^m . Let A be the matrix for T with respect to the standard bases for F^n and F^m . Let W be the subspace of F^m spanned by the columns of A. State one or two relationships between W and T.
- * **31.** Let *T* be the linear operator on \mathbb{R}^3 defined by $T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3)$ (1)
 - (a) What is the matrix for T in the standard basis?
 - (b) Find the matrix for T relative to the basis

 $v_1 = (1, 0, 1)$ $v_2 = (-1, 2, 1)$ $v_3 = (2, 1, 1)$

(c) Prove that T is invertible and find an expression for the transformation T^{-1} like the one in Equation (1).

** **32.** Let V be an n-dimensional vector space over the field F and let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be an ordered basis for V.

- (a) Let T be the (unique) linear transformation that satisfies $Tv_j = v_{j+1}$ for $j = 1, 2, \dots, n-1$ and $Tv_n = 0$. Find the matrix for T with respect to basis \mathcal{B} above.
- (b) Prove that $T^n = 0$ but T^{n-1} is not the zero transformation.
- (c) Let S be an operator on V for which $S^n = 0$ but $S^{n-1} \neq 0$. Prove that there is an ordered basis \mathcal{B}' for V such that the matrix for S with respect to the basis \mathcal{B}' is the same as the matrix from part (a) of this exercise.