February 1

* 18. Consider the homogeneous system of equations

$$
(*)\left\{\begin{array}{rl}
2 x_{1}-x_{2} & +\frac{4}{3} x_{3}-x_{4} \\
x_{1} & +\frac{2}{3} x_{3} \\
9 x_{1}-3 x_{2} & +6 x_{3}-3 x_{4}-3 x_{5}
\end{array}=00040\right.
$$

Let W be the subspace of \mathbb{R}^{5} consisting of those vectors that are solutions of system $(*)$. Find a basis for W.

* 19. Let W_{1} and W_{2} be subspaces of the vector space \mathcal{V} such that their set theoretic union, $W_{1} \cup W_{2}$, is a subspace of \mathcal{V}. Prove that either $W_{1} \subset W_{2}$ or $W_{2} \subset W_{1}$.
* 20. Let M_{1} and M_{2} be subspaces of the vector space \mathcal{V} such that $M_{1}+M_{2}=\mathcal{V}$ and $M_{1} \cap M_{2}=(0)$. Prove that every vector v in \mathcal{V} can be written as $u_{1}+u_{2}=v$ where u_{1} is a vector in M_{1} and u_{2} is a vector in M_{2} and that u_{1} and u_{2} are the only vectors in M_{1} and M_{2}, respectively, for which this is true.
* 21. Let \mathcal{V} be the vector space of 2×2 matrices over the field F. Find a basis for \mathcal{V} consisting of matrices $A_{1}, A_{2}, A_{3}, A_{4}$ such that $A_{j}^{2}=A_{j}$ for each of $j=1,2,3$, and 4 .
* 22. Let A be an $m \times n$ matrix with $m<n$. Show that the system of equations $A X=0$ has a non-trivial solution.
* 23. Find a homogeneous system of equations such that subspace of solutions of the system is spanned by $u=(-1,0,1,2), v=(3,4,-2,5)$, and $w=(1,4,0,9)$.
* 24. Show that the vectors $z_{1}=(1,0,-i), z_{2}=(1+i, 1-i, 1)$, and $z_{3}=(i, i, i)$ comprise a basis for \mathbb{C}^{3} and write the vector (a, b, c) as a linear combination of z_{1}, z_{2}, and z_{3}.
* 25. Let V be the subspace of \mathbb{R}^{5} spanned by the rows of the matrix

$$
A=\left(\begin{array}{rrrrr}
3 & 20 & 0 & 9 & 0 \\
1 & 7 & -1 & -2 & -1 \\
2 & 14 & 0 & 6 & 1 \\
6 & 42 & -1 & 13 & 0
\end{array}\right)
$$

(a) Find a basis for V.
(b) Find a matrix B with 5 rows so that X is in V if and only if $X B=0$.

