January 25

* 13. Let $A=\left(\begin{array}{rrrr}1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 5 \\ 1 & -2 & 1 & 1\end{array}\right) \quad$ Find a row reduced echelon form matrix R that is row equivalent to A and an invertible 3×3 matrix P so that $R=P A$.
* 14. An $n \times n$ matrix A is said to be an upper triangular if every entry below the main diagonal is 0 . Prove that such a matrix A is invertible if and only if every entry on the main diagonal is non-zero.
* 15. Let A be an $n \times n$ matrix. Prove:
(a) If A is invertible and B is an $n \times n$ matrix for which $A B=0$, then $B=0$.
(b) If A is not invertible, there is B a non-zero $n \times n$ matrix for which $A B=0$.

16. Suppose A is a square matrix with entries in a field F partitioned as

$$
A=\left(\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right)
$$

where X and Z are square matrices and 0 is a zero matrix.
(a) Find necessary and sufficient conditions on X, Y, and Z so that A is invertible and then find formulas for P, Q, R, and S so that A^{-1} is the block matrix

$$
\left(\begin{array}{ll}
P & Q \\
R & S
\end{array}\right)
$$

(b) Use your formula to find A^{-1}

$$
\text { when } X=\left(\begin{array}{lll}
1 & -1 & 2 \\
2 & -3 & 3 \\
3 & -2 & 5
\end{array}\right), \quad Y=\left(\begin{array}{rr}
1 & -1 \\
0 & 1 \\
-3 & 1
\end{array}\right), \quad \text { and } Z=\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right)
$$

17. Suppose A is an $n \times n$ real matrix, u and v are real column and row vectors, respectively, and a is a real number. The matrix

$$
X=\left(\begin{array}{cc}
A & u \\
v & a
\end{array}\right)
$$

is an $(n+1) \times(n+1)$ matrix called a bordered matrix.
(a) Show that if A is invertible and $a-v A^{-1} u \neq 0$ then X is invertible and

$$
X^{-1}=\left(\begin{array}{cc}
B & p \\
q & b
\end{array}\right)
$$

where $B=A^{-1}+b A^{-1} u v A^{-1}, p=-b A^{-1} u, q=-b v A^{-1}$, and $b=\left(a-v A^{-1} u\right)^{-1}$
(b) Use the formula above to find the inverse of

$$
\left(\begin{array}{rrr}
1 & -2 & 2 \\
-1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

