January 18

Let
$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 2 \\ 1 & -1 & 0 & -1 \end{pmatrix}$$
 let $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ and let $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$

where x_1, x_2, x_3 , and x_4 and y_1, y_2, y_3 , and y_4 are variables whose values are real numbers. Find conditions on Y that ensure the equation AX = Y has solutions. (See problem 4.)

* 11. Let $C = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2 × 2 matrix with real entries a, b, c, and d. Show that there are 2 × 2 real matrices A and B so that C = AB - BA if and only if a + d = 0.

* **12.**

Let \mathcal{F} be a field. Let C be the $m \times p$ matrix C = AB where A and B are, respectively, $m \times n$ and $n \times p$ matrices with entries in the field \mathcal{F} .

Prove that the columns of C are linear combinations of the columns of A, that is, specifically, if C_1, C_2, \dots , and C_p are the columns of C, and A_1, A_2, \dots , and A_n are the columns of A, then there are coefficients $\{\beta_{ij}\}$, each in the field \mathcal{F} , so that for each i,

$$C_i = \sum_{j=1}^n \beta_{ij} A_j$$