January 18

* 10.

Let $A=\left(\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 2 \\ 1 & -1 & 0 & -1\end{array}\right) \quad$ let $\quad X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \quad$ and let $\quad Y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right)$
where x_{1}, x_{2}, x_{3}, and x_{4} and y_{1}, y_{2}, y_{3}, and y_{4} are variables whose values are real numbers. Find conditions on Y that ensure the equation $A X=Y$ has solutions. (See problem 4.)

* 11.

Let $C=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ be a 2×2 matrix with real entries a, b, c, and d. Show that there are 2×2 real matrices A and B so that $C=A B-B A$ if and only if $a+d=0$.

* 12.

Let \mathcal{F} be a field. Let C be the $m \times p$ matrix $C=A B$ where A and B are, respectively, $m \times n$ and $n \times p$ matrices with entries in the field \mathcal{F}.

Prove that the columns of C are linear combinations of the columns of A, that is, specifically, if C_{1}, C_{2}, \cdots, and C_{p} are the columns of C, and A_{1}, A_{2}, \cdots, and A_{n} are the columns of A, then there are coefficients $\left\{\beta_{i j}\right\}$, each in the field \mathcal{F}, so that for each i,

$$
C_{i}=\sum_{j=1}^{n} \beta_{i j} A_{j}
$$

