May 1: For Discussion!

For the following problems, unless otherwise specified, assume all vectors are in \mathbb{C}^{n} for some positive integer, n, and the inner product, $\langle\cdot, \cdot\rangle$, is the Euclidean inner product.
114. An $n \times n$ matrix is called unitary if $U^{\prime}=U^{-1}$.
(a) For C an $m \times k$ matrix, prove that the columns of C form an orthonormal set if and only if $C^{\prime} C=I$.
(b) Prove that an $n \times n$ matrix U is unitary if and only if its columns form an orthonormal basis for \mathbb{C}^{n}.
(c) Prove: if U and V are unitary, then U^{-1} and $U V$ are also unitary.
(d) Show that if U is unitary, then the transformation $x \mapsto U x$ is a rigid motion in the sense that, for v and w vectors in $\mathbb{C}^{n},\langle U v, U w\rangle=\langle v, w\rangle$ and $\|U v\|=\|v\|$, so for vectors in \mathbb{R}^{n}, the angle between $U v$ and $U w$ is the same as the angle between v and w.
115. The Gram-Schmidt algorithm is specifically created to preserve order: If v_{1}, v_{2}, \cdots, v_{k} is an ordered set of vectors in an inner product space \mathcal{V}, then applying the Gram-Schmidt algorithm gives an orthogonal set of vectors $w_{1}, w_{2}, \cdots, w_{k}$, so that for $1 \leq j \leq k$, the span of $\left\{v_{1}, v_{2}, \cdots, v_{j}\right\}$ is the same as $\operatorname{span}\left\{w_{1}, w_{2}, \cdots, w_{j}\right\}$. This is especially important in some engineering or differential equations settings.

If $\mathcal{V}=L^{2}([-1,1])$, then the functions $1, x, x^{2}, x^{3}, \cdots$ span \mathcal{V} in the sense that the closure of the set of polynomials in x is \mathcal{V}. The usual inner product on \mathcal{V} is $\langle f, g\rangle=$ $\int_{-1}^{1} \overline{f(t)} g(t) d t$, and the Legendre polynomials are the orthonormal basis obtained by using Gram-Schmidt on the set of monomials, in the given order, so that the $k^{\text {th }}$ Legendre polynomial is a polynomial of degree $k-1$.

For \mathcal{V} an inner product space, let $v_{1}, v_{2}, \cdots, v_{k}$ be an ordered set of vectors in \mathcal{V}. For $1 \leq j \leq k-1$, let P_{j} be the orthogonal projection of \mathcal{V} onto $\operatorname{span}\left\{v_{1}, \cdots, v_{j}\right\}$. Let $w_{1}=v_{1}$, let $w_{2}=v_{2}-P_{1}\left(v_{2}\right)$, and more generally, for $j<k$, let $w_{j+1}=v_{j+1}-P_{j}\left(v_{j+1}\right)$. Prove that $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ is an orthogonal set of vectors such that, for $1 \leq j \leq k$, the span of $\left\{v_{1}, v_{2}, \cdots, v_{j}\right\}$ is the same as $\operatorname{span}\left\{w_{1}, w_{2}, \cdots, w_{j}\right\}$. In other words, the ordered set $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ is the same set as produced by the Gram-Schmidt process.
116. Let M be the hyperplane in \mathbb{C}^{4} with equation $a+b-c+2 d=0$. Find the matrix (with respect to the usual basis) for the orthogonal projection of \mathbb{C}^{4} onto M. Use it to find the point of M closest to ($1,1,1,1$).
117. Let U be an $n \times n$ complex matrix that is unitary.
(a) Prove that if λ is an eigenvalue of U, then $|\lambda|=1$.
(b) Prove that the determinant of U has absolute value 1 .
118. Let \mathcal{V} be an inner product space and let $W \neq(0)$ be a subspace of \mathcal{V}. Let P be an operator on \mathcal{V} with range $(P)=W$ and $P^{2}=P$.
(a) Show that there is v in \mathcal{V} such that $\|P v\| \geq\|v\|$.
(b) Show that P is the orthogonal projection of \mathcal{V} onto W if and only if $\|P v\| \leq\|v\|$ for all v in \mathcal{V}.
119. Find unitary matrix U and upper triangular matrix T so that $U^{-1} A U=T$ where

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 2 & 1 \\
0 & -5 & -2 & 3 \\
0 & 2 & -1 & -1 \\
0 & -8 & -4 & 5
\end{array}\right)
$$

120. Find all 5×5 matrices N that are both nilpotent and Hermitian.
121. The 5×5 matrix S is Hermitian and v is an eigenvector for S with eigenvalue -3 . The vector w is perpendicular to v. Prove that $S w$ is also perpendicular to v.
122. Prove that the product of two Hermitian matrices is Hermitian if and only if the matrices commute.
123.

(a) Let B be a Hermitian matrix and let $A=B^{2}$. Prove that if λ is an eigenvalue of A, then λ is real and $\lambda \geq 0$.
(b) (A converse of part (a).) Let C be a Hermitian matrix all of whose eigenvalues are non-negative real numbers. Prove that there is a Hermitian matrix B, all of whose eigenvalues are non-negative real numbers, such that $B^{2}=C$.
(c) The eigenvalues of $C=\left(\begin{array}{rr}5 & -4 \\ -4 & 5\end{array}\right)$ are 1 and 9 . Find a Hermitian matrix B, all of whose eigenvalues are non-negative, such that $B^{2}=C$.
124.

Let N be the matrix $N=\left(\begin{array}{rrrr}1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1\end{array}\right)$
(a) Show that N is a normal matrix.
(b) Find a unitary matrix U that diagonalizes N.
125. Let \mathcal{V} be the vector space of $n \times n$ complex matrices. Make \mathcal{V} into an inner product space by defining the inner product of two $n \times n$ complex matrices A and B to be $\langle A, B\rangle=\operatorname{tr}\left(A^{\prime} B\right)$. For M a fixed $n \times n$ matrix, let T_{M} be the linear transformation on \mathcal{V} defined by $T_{M}(A)=M A$. Prove that T_{M} is unitary on \mathcal{V} if and only if M is a unitary matrix.
126. Let T be a normal matrix on the inner product space. Prove that T is Hermitian if and only if all the eigenvalues of T are real and that T is unitary if and only if all the eigenvalues have modulus 1 .
127. For T a linear transformation on an inner product space, prove that T is normal if and only if there are Hermitian matrices T_{1} and T_{2} that commute with each other such that $T=T_{1}+i T_{2}$.

