May 1: For Discussion!

For the following problems, unless otherwise specified, assume all vectors are in \mathbb{C}^n for some positive integer, n, and the inner product, $\langle \cdot, \cdot \rangle$, is the Euclidean inner product.

- 114. An $n \times n$ matrix is called *unitary* if $U' = U^{-1}$.
 - (a) For C an $m \times k$ matrix, prove that the columns of C form an orthonormal set if and only if C'C = I.
 - (b) Prove that an $n \times n$ matrix U is unitary if and only if its columns form an orthonormal basis for \mathbb{C}^n .
 - (c) Prove: if U and V are unitary, then U^{-1} and UV are also unitary.
 - (d) Show that if U is unitary, then the transformation $x \mapsto Ux$ is a rigid motion in the sense that, for v and w vectors in \mathbb{C}^n , $\langle Uv, Uw \rangle = \langle v, w \rangle$ and ||Uv|| = ||v||, so for vectors in \mathbb{R}^n , the angle between Uv and Uw is the same as the angle between v and w.
- 115. The Gram-Schmidt algorithm is specifically created to preserve order: If v_1, v_2, \dots, v_k is an ordered set of vectors in an inner product space \mathcal{V} , then applying the Gram-Schmidt algorithm gives an *orthogonal set* of vectors w_1, w_2, \dots, w_k , so that for $1 \leq j \leq k$, the span of $\{v_1, v_2, \dots, v_j\}$ is the same as $\text{span}\{w_1, w_2, \dots, w_j\}$. This is especially important in some engineering or differential equations settings.

If $\mathcal{V} = L^2([-1,1])$, then the functions $1, x, x^2, x^3, \cdots$ span \mathcal{V} in the sense that the closure of the set of polynomials in x is \mathcal{V} . The usual inner product on \mathcal{V} is $\langle f, g \rangle = \int_{-1}^{1} \overline{f(t)}g(t) dt$, and the *Legendre polynomials* are the orthonormal basis obtained by using Gram-Schmidt on the set of monomials, in the given order, so that the k^{th} Legendre polynomial is a polynomial of degree k - 1.

For \mathcal{V} an inner product space, let v_1, v_2, \dots, v_k be an ordered set of vectors in \mathcal{V} . For $1 \leq j \leq k-1$, let P_j be the orthogonal projection of \mathcal{V} onto $\operatorname{span}\{v_1, \dots, v_j\}$. Let $w_1 = v_1$, let $w_2 = v_2 - P_1(v_2)$, and more generally, for j < k, let $w_{j+1} = v_{j+1} - P_j(v_{j+1})$. Prove that $\{w_1, w_2, \dots, w_k\}$ is an orthogonal set of vectors such that, for $1 \leq j \leq k$, the span of $\{v_1, v_2, \dots, v_j\}$ is the same as $\operatorname{span}\{w_1, w_2, \dots, w_j\}$. In other words, the ordered set $\{w_1, w_2, \dots, w_k\}$ is the same set as produced by the Gram-Schmidt process.

- 116. Let M be the hyperplane in \mathbb{C}^4 with equation a + b c + 2d = 0. Find the matrix (with respect to the usual basis) for the orthogonal projection of \mathbb{C}^4 onto M. Use it to find the point of M closest to (1, 1, 1, 1).
- 117. Let U be an $n \times n$ complex matrix that is unitary.
 - (a) Prove that if λ is an eigenvalue of U, then $|\lambda| = 1$.
 - (b) Prove that the determinant of U has absolute value 1.
- **118.** Let \mathcal{V} be an inner product space and let $W \neq (0)$ be a subspace of \mathcal{V} . Let P be an operator on \mathcal{V} with range(P) = W and $P^2 = P$.
 - (a) Show that there is v in \mathcal{V} such that $||Pv|| \ge ||v||$.
 - (b) Show that P is the orthogonal projection of \mathcal{V} onto W if and only if $||Pv|| \leq ||v||$ for all v in \mathcal{V} .

119. Find unitary matrix U and upper triangular matrix T so that $U^{-1}AU = T$ where

$$A = \begin{pmatrix} 1 & -2 & 2 & 1 \\ 0 & -5 & -2 & 3 \\ 0 & 2 & -1 & -1 \\ 0 & -8 & -4 & 5 \end{pmatrix}$$

120. Find all 5×5 matrices N that are both nilpotent and Hermitian.

- 121. The 5×5 matrix S is Hermitian and v is an eigenvector for S with eigenvalue -3. The vector w is perpendicular to v. Prove that Sw is also perpendicular to v.
- **122.** Prove that the product of two Hermitian matrices is Hermitian if and only if the matrices commute.

123.

- (a) Let B be a Hermitian matrix and let $A = B^2$. Prove that if λ is an eigenvalue of A, then λ is real and $\lambda \ge 0$.
- (b) (A converse of part (a).) Let C be a Hermitian matrix all of whose eigenvalues are non-negative real numbers. Prove that there is a Hermitian matrix B, all of whose eigenvalues are non-negative real numbers, such that $B^2 = C$.
- (c) The eigenvalues of $C = \begin{pmatrix} 5 & -4 \\ -4 & 5 \end{pmatrix}$ are 1 and 9. Find a Hermitian matrix B, all of whose eigenvalues are non-negative, such that $B^2 = C$.

124.

- (a) Show that N is a normal matrix.
- (b) Find a unitary matrix U that diagonalizes N.
- 125. Let \mathcal{V} be the vector space of $n \times n$ complex matrices. Make \mathcal{V} into an inner product space by defining the inner product of two $n \times n$ complex matrices A and Bto be $\langle A, B \rangle = \operatorname{tr}(A'B)$. For M a fixed $n \times n$ matrix, let T_M be the linear transformation on \mathcal{V} defined by $T_M(A) = MA$. Prove that T_M is unitary on \mathcal{V} if and only if M is a unitary matrix.
- 126. Let T be a normal matrix on the inner product space. Prove that T is Hermitian if and only if all the eigenvalues of T are real and that T is unitary if and only if all the eigenvalues have modulus 1.
- 127. For T a linear transformation on an inner product space, prove that T is normal if and only if there are Hermitian matrices T_1 and T_2 that commute with each other such that $T = T_1 + iT_2$.