Notation and Definitions for Material on \mathbb{R}^{n} and \mathbb{C}^{n} as Inner Product Spaces

Definition: If A is an $m \times n$ real or complex matrix the adjoint of A, denoted by A^{\prime}, is the conjugate transpose of A. That is, if $A=\left(a_{i j}\right)_{i=1, j=1}^{m}$, then $A^{\prime}=B$ where $B=\left(b_{k \ell}\right)_{k=1, \ell=1}^{m}$ and the entries of B satisfy $b_{i j}=\overline{a_{j i}}$.

Unless otherwise specified, if v is in \mathbb{R}^{n} or \mathbb{C}^{n}, we will not distinguish, by any notation, between thinking of v as a column vector or an $n \times 1$ matrix. We will also regard a 1×1 matrix as representing the number that is its entry.
Definition: The usual or Euclidean or standard inner product for vectors in \mathbb{R}^{n} or \mathbb{C}^{n}, denoted $\langle\cdot, \cdot\rangle$, is defined to be the number

$$
<u, v>=u^{\prime} v \quad \text { for } u \text { and } v \text { in } \mathbb{R}^{n} \text { or } \mathbb{C}^{n}
$$

In particular, this means for $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ and $v=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$, then

$$
<u, v>=\overline{u_{1}} v_{1}+\overline{u_{2}} v_{2}+\cdots+\overline{u_{n}} v_{n}
$$

and $\langle u, a v+b w\rangle=a\langle u, v\rangle+b\langle u, w\rangle$, but $\langle c u+d v, w\rangle=\bar{c}\langle u, w\rangle+\bar{d}\langle v, w\rangle$
It follows that u in \mathbb{C}^{n} and v in \mathbb{C}^{m}, if A is an $m \times n$ matrix, then

$$
<A u, v>=(A u)^{\prime} v=\left(u^{\prime} A^{\prime}\right) v=u^{\prime}\left(A^{\prime} v\right)=\left\langle u, A^{\prime} v>\right.
$$

The usual or Euclidean norm on \mathbb{R}^{n} or \mathbb{C}^{n} is defined to be $\|u\|=\sqrt{\langle u, u\rangle}$
Definition: The set of vectors $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ in \mathbb{R}^{n} or \mathbb{C}^{n} is said to be an orthogonal set of vectors if for $1 \leq i<j \leq k$, we have $\left\langle v_{i}, v_{j}\right\rangle=0$ and the set is said to be an orthonormal set of vectors if it is an orthogonal set and $\left\|v_{i}\right\|=1$ for all i with $1 \leq i \leq k$.

* 109. The Parallelogram Law from Euclidean Geometry is: The sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of the sides. If u and v are vectors that form the sides of a parallelogram, then the diagonals are $u+v$ and $u-v$. Prove the vector form of the Parallelogram Law

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

110. Prove that an orthogonal set of non-zero vectors is linearly independent.

* 111. Let $\mathcal{B}=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ be an orthonormal set of vectors in \mathbb{C}^{n}.
(a) Prove that \mathcal{B} is basis for \mathbb{C}^{n}, that is, an orthonormal basis, and that for any u in \mathbb{C}^{n}

$$
u=<w_{1}, u>w_{1}+<w_{2}, u>w_{2}+\cdots+<w_{n}, u>w_{n}
$$

(b) Prove: for u and v in $\mathbb{C}^{n},\langle u, v\rangle=\sum_{j=1}^{n} \overline{\left\langle w_{j}, u>\right.}\left\langle w_{j}, v\right\rangle=\sum_{j=1}^{n}\left\langle u, w_{j}\right\rangle\left\langle w_{j}, v\right\rangle$ and therefore that $\|u\|^{2}=\sum_{j=1}^{n} \mid\left\langle w_{j}, u>\left.\right|^{2}\right.$
** 112. Let C and D be $n \times n$ matrices.
(a) Prove that the nullspace of D is a subset of the nullspace of $C D$.
(b) Prove that the range of $C D$ is a subset of the range of C.
(c) Use the results of (a) and (b) to prove that

$$
\operatorname{rank}(C D) \leq \operatorname{rank}(C) \quad \text { and } \quad \operatorname{rank}(C D) \leq \operatorname{rank}(D)
$$

113. Let $A=\left(\begin{array}{rrrr}1 & 1 & -1 & 2 \\ -1 & 0 & 2 & -3 \\ 1 & -1 & -3 & 4\end{array}\right)$

The vectors $v_{1}=(2,-1,1,0)$ and $v_{2}=(-3,1,0,1)$ are a basis for the nullspace of A.
(a) Find a basis for the range of A.
(b) Find a basis for the range of A^{\prime}.
(c) Find a basis for the orthogonal complement of the range of A^{\prime}.
(d) Find a basis for the nullspace of A^{\prime}.

