Notation and Definitions for Material on \mathbb{R}^n and \mathbb{C}^n as Inner Product Spaces

Definition: If A is an $m \times n$ real or complex matrix the *adjoint of* A, denoted by A', is the conjugate transpose of A. That is, if $A = (a_{ij})_{i=1,j=1}^{m}$, then A' = B where $B = (b_{k\ell})_{k=1,\ell=1}^{n}$ and the entries of B satisfy $b_{ij} = \overline{a_{ji}}$.

Unless otherwise specified, if v is in \mathbb{R}^n or \mathbb{C}^n , we will not distinguish, by any notation, between thinking of v as a column vector or an $n \times 1$ matrix. We will also regard a 1×1 matrix as representing the number that is its entry.

Definition: The usual or Euclidean or standard inner product for vectors in \mathbb{R}^n or \mathbb{C}^n , denoted $\langle \cdot, \cdot \rangle$, is defined to be the number

 $\langle u, v \rangle = u'v$ for u and v in \mathbb{R}^n or \mathbb{C}^n

In particular, this means for $u = (u_1, u_2, \dots, u_n)$ and $v = (v_1, v_2, \dots, v_n)$, then

 $\langle u, v \rangle = \overline{u_1}v_1 + \overline{u_2}v_2 + \dots + \overline{u_n}v_n$

and $\langle u, av + bw \rangle = a \langle u, v \rangle + b \langle u, w \rangle$, but $\langle cu + dv, w \rangle = \overline{c} \langle u, w \rangle + \overline{d} \langle v, w \rangle$

It follows that u in \mathbb{C}^n and v in \mathbb{C}^m , if A is an $m \times n$ matrix, then

$$\langle Au, v \rangle = (Au)'v = (u'A')v = u'(A'v) = \langle u, A'v \rangle$$

The usual or Euclidean norm on \mathbb{R}^n or \mathbb{C}^n is defined to be $||u|| = \sqrt{\langle u, u \rangle}$

Definition: The set of vectors $\{v_1, v_2, \dots, v_k\}$ in \mathbb{R}^n or \mathbb{C}^n is said to be an orthogonal set of vectors if for $1 \leq i < j \leq k$, we have $\langle v_i, v_j \rangle = 0$ and the set is said to be an orthonormal set of vectors if it is an orthogonal set and $||v_i|| = 1$ for all i with $1 \leq i \leq k$.

* 109. The Parallelogram Law from Euclidean Geometry is: The sum of the squares of the lengths of the diagonals is equal to the sum of the squares of the lengths of the sides. If u and v are vectors that form the sides of a parallelogram, then the diagonals are u + v and u - v. Prove the vector form of the Parallelogram Law

$$||u + v||^{2} + ||u - v||^{2} = 2(||u||^{2} + ||v||^{2})$$

110. Prove that an orthogonal set of non-zero vectors is linearly independent.

* 111. Let $\mathcal{B} = \{w_1, w_2, \cdots, w_n\}$ be an orthonormal set of vectors in \mathbb{C}^n .

(a) Prove that \mathcal{B} is basis for \mathbb{C}^n , that is, an orthonormal basis, and that for any u in \mathbb{C}^n $u = \langle w_1, u \rangle w_1 + \langle w_2, u \rangle w_2 + \cdots + \langle w_n, u \rangle w_n$

(b) Prove: for
$$u$$
 and v in \mathbb{C}^n , $\langle u, v \rangle = \sum_{j=1}^n \overline{\langle w_j, u \rangle} \langle w_j, v \rangle = \sum_{j=1}^n \langle u, w_j \rangle \langle w_j, v \rangle$
and therefore that $||u||^2 = \sum_{j=1}^n |\langle w_j, u \rangle|^2$

** 112. Let C and D be $n \times n$ matrices.

- (a) Prove that the nullspace of D is a subset of the nullspace of CD.
- (b) Prove that the range of CD is a subset of the range of C.
- (c) Use the results of (a) and (b) to prove that

$$\operatorname{rank}(CD) \le \operatorname{rank}(C)$$
 and $\operatorname{rank}(CD) \le \operatorname{rank}(D)$

** **113.** Let
$$A = \begin{pmatrix} 1 & 1 & -1 & 2 \\ -1 & 0 & 2 & -3 \\ 1 & -1 & -3 & 4 \end{pmatrix}$$

The vectors $v_1 = (2, -1, 1, 0)$ and $v_2 = (-3, 1, 0, 1)$ are a basis for the nullspace of A.

- (a) Find a basis for the range of A.
- (b) Find a basis for the range of A'.
- (c) Find a basis for the orthogonal complement of the range of A'.
- (d) Find a basis for the nullspace of A'.