April 19

* 95. Let T be the linear transformation on \mathbb{C}^3 whose matrix with respect to the usual basis is

$$\left(\begin{array}{rrrr}1&i&0\\-1&2&-i\\0&1&1\end{array}\right)$$

- (a) Find the *T*-annihilator of (1, 0, 0).
- (b) Find the *T*-annihilator of (1, 0, i).
- * 96. Let T be a linear transformation on the finite dimensional vector space \mathcal{V} .
 - (a) Prove that if T^2 has a cyclic vector, then T has a cyclic vector.
 - (b) Is the converse true? Either give a proof or a counterexample to show that your answer is correct.
- * 97. Let N be a nilpotent linear transformation on the n-dimensional vector space V.
 (a) Prove: N has a cyclic vector if and only if Nⁿ⁻¹ ≠ 0.
 - (b) If v is a vector in \mathcal{V} for which $N^{n-1}v \neq 0$, what is the matrix for N with respect to the basis $v, Nv, \dots, N^{n-1}v$.
- * 98. A linear transformation acting on \mathbb{R}^3 has matrix with respect to the usual basis:

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{pmatrix}$$

Find a 3×3 matrix P such that $P^{-1}AP$ is in rational form.

* 99. Prove that if A and B are 3×3 matrices over the field F, then A and B are similar if and only if they have the same minimal polynomials and the same characteristic polynomials. Give an example that shows this is not a theorem for 4×4 matrices.

- * 100. Let C be a linear operator on a finite dimensional vector space \mathcal{V} .
 - (a) Prove: If C does not have a cyclic vector, there is an operator G that commutes with C, but G is not a polynomial in C.
 - (b) Prove: If C has a cyclic vector, every operator that commutes with C is a polynomial in C.

In other words, C has a cyclic vector if and only if every operator that commutes with C is a polynomial in C.

* **101.**
Let
$$B = \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & -1 \\ 1 & 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 & 1 \end{pmatrix}$$

Considering B as a matrix with entries in the field \mathbb{C} , the minimal polynomial of B is $p(x) = x^4 - 2x^3 + x^2$ and the characteristic polynomial is $q(x) = x^5 - 3x^4 + 3x^3 - x^2$. Find a complex matrix A in rational canonical form that is similar to B.