April 19

* 95. Let T be the linear transformation on \mathbb{C}^{3} whose matrix with respect to the usual basis is

$$
\left(\begin{array}{rrr}
1 & i & 0 \\
-1 & 2 & -i \\
0 & 1 & 1
\end{array}\right)
$$

(a) Find the T-annihilator of $(1,0,0)$.
(b) Find the T-annihilator of $(1,0, i)$.

* 96. Let T be a linear transformation on the finite dimensional vector space \mathcal{V}.
(a) Prove that if T^{2} has a cyclic vector, then T has a cyclic vector.
(b) Is the converse true? Either give a proof or a counterexample to show that your answer is correct.
* 97. Let N be a nilpotent linear transformation on the n-dimensional vector space \mathcal{V}.
(a) Prove: N has a cyclic vector if and only if $N^{n-1} \neq 0$.
(b) If v is a vector in \mathcal{V} for which $N^{n-1} v \neq 0$, what is the matrix for N with respect to the basis $v, N v, \cdots, N^{n-1} v$.
* 98. A linear transformation acting on \mathbb{R}^{3} has matrix with respect to the usual basis:

$$
A=\left(\begin{array}{rrr}
1 & 3 & 3 \\
3 & 1 & 3 \\
-3 & -3 & -5
\end{array}\right)
$$

Find a 3×3 matrix P such that $P^{-1} A P$ is in rational form.

* 99. Prove that if A and B are 3×3 matrices over the field F, then A and B are similar if and only if they have the same minimal polynomials and the same characteristic polynomials. Give an example that shows this is not a theorem for 4×4 matrices.
* 100. Let C be a linear operator on a finite dimensional vector space \mathcal{V}.
(a) Prove: If C does not have a cyclic vector, there is an operator G that commutes with C, but G is not a polynomial in C.
(b) Prove: If C has a cyclic vector, every operator that commutes with C is a polynomial in C.

In other words, C has a cyclic vector if and only if every operator that commutes with C is a polynomial in C.

$$
\text { * 101. } \text { Let } B=\left(\begin{array}{rrrrr}
1 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & -1 \\
1 & 1 & -1 & 0 & 2 \\
1 & 0 & -1 & 0 & 1
\end{array}\right)
$$

Considering B as a matrix with entries in the field \mathbb{C}, the minimal polynomial of B is $p(x)=x^{4}-2 x^{3}+x^{2}$ and the characteristic polynomial is $q(x)=x^{5}-3 x^{4}+3 x^{3}-x^{2}$. Find a complex matrix A in rational canonical form that is similar to B.

