- * 89. Suppose \mathcal{V} is a vector space over the field F and E and T are, respectively, a projection and a linear transformation on \mathcal{V} .
 - (a) Show that the range of E is invariant for T if and only if ETE = TE.
 - (b) Show that the range and nullspace of E are *both* invariant for T if and only if TE = ET.
 - (c) Which operators commute with *every* projection on \mathcal{V} ?
- * 90. Suppose \mathcal{V} is a vector space over the field F and for $j = 1, \dots, k$ the subspaces W_j satisfy $\mathcal{V} = W_1 \oplus W_2 \oplus \dots \oplus W_k$

Let T be a linear transformation on \mathcal{V} for which the subspaces W_j are invariant for $j = 1, \dots, k$, let T_j be the restriction of T to W_j , let A_j be the matrix for T_j with respect to the basis \mathcal{B}_j for W_j , and let A be the matrix for T with respect to the basis $\mathcal{B} = \{\mathcal{B}_1, \dots, \mathcal{B}_k\}$ for \mathcal{V} .

- (a) Show that $\det(A) = \det(A_1) \det(A_2) \cdots \det(A_k)$.
- (b) Prove that if f_j is the characteristic polynomial of T_j and A_j , then the characteristic polynomial of T and A is f, the product of the f_j 's.
- (c) Prove that the minimal polynomial of T and A is the least common multiple of the minimal polynomials of the T_j 's.

* 91.
Let
$$G = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

(It might be helpful to observe that 1 is an eigenvalue of G.)

- (a) Find the characteristic and minimal polynomials for G and explain how you know that G is diagonalizable over the field \mathbb{R} .
- (b) Find eigenspaces W_1 , W_2 , and W_3 that are invariant subspaces for G giving a direct sum decomposition of \mathbb{R}^4 as $W_1 \oplus W_2 \oplus W_3$.
- (c) Find projections E_1 , E_2 , and E_3 so that $E_1 + E_2 + E_3 = I$, $E_i E_j = 0$ for $i \neq j$ and $G = aE_1 + bE_2 + cE_3$ for some real numbers a, b, and c.
- * 92. Let T be the linear transformation on \mathbb{R}^3 represented in the usual basis by the matrix $\begin{pmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{pmatrix}$
 - (a) Express the minimal polynomial for T as $p = p_1 p_2$ where p_1 and p_2 are monic and irreducible polynomials over \mathbb{R} .
 - (b) For both j = 1 and j = 2, find a basis \mathcal{B}_j for W_j , the null space of $p_j(T)$.
 - (c) Find the matrices for T_1 and T_2 , the restrictions of T to W_1 and W_2 , with respect to these bases, and also find the matrix for T with respect to the basis $\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2\}$.

* 93. Let S be the linear transformation on \mathbb{R}^3 represented in the usual basis by the matrix

Show that there are a diagonalizable operator D and a nilpotent operator N on \mathbb{R}^3 so that S = D + N and DN = ND. Find the matrices for D and N in the usual basis for \mathbb{R}^3 .

* 94. Let T be a linear transformation on a finite dimensional vector space \mathcal{V} that has characteristic polynomial

$$f = (x - c_1)^{d_1} (x - c_2)^{d_2} \cdots (x - c_k)^{d_k}$$

and minimal polynomial

$$p = (x - c_1)^{r_1} (x - c_2)^{r_2} \cdots (x - c_k)^{r_k}$$

Let W_i be the null space of $(T - c_i I)^{r_i}$.

- (a) Prove that W_i is an invariant subspace for T.
- (b) Letting T_i denote the restriction of T to the invariant subspace W_i , show that $T_i c_i I$ is nilpotent on W_i and find its order of nilpotence.
- (c) Find the minimal polynomial of T_i , the characteristic polynomial of T_i , and the dimension of W_i .