April 12

* 89. Suppose \mathcal{V} is a vector space over the field F and E and T are, respectively, a projection and a linear transformation on \mathcal{V}.
(a) Show that the range of E is invariant for T if and only if $E T E=T E$.
(b) Show that the range and nullspace of E are both invariant for T if and only if $T E=E T$.
(c) Which operators commute with every projection on \mathcal{V} ?
* 90. Suppose \mathcal{V} is a vector space over the field F and for $j=1, \cdots, k$ the subspaces W_{j} satisfy

$$
\mathcal{V}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}
$$

Let T be a linear transformation on \mathcal{V} for which the subspaces W_{j} are invariant for $j=1, \cdots, k$, let T_{j} be the restriction of T to W_{j}, let A_{j} be the matrix for T_{j} with respect to the basis \mathcal{B}_{j} for W_{j}, and let A be the matrix for T with respect to the basis $\mathcal{B}=\left\{\mathcal{B}_{1}, \cdots, \mathcal{B}_{k}\right\}$ for \mathcal{V}.
(a) Show that $\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \cdots \operatorname{det}\left(A_{k}\right)$.
(b) Prove that if f_{j} is the characteristic polynomial of T_{j} and A_{j}, then the characteristic polynomial of T and A is f, the product of the f_{j} 's.
(c) Prove that the minimal polynomial of T and A is the least common multiple of the minimal polynomials of the T_{j} 's.

* 91. Let $G=\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1\end{array}\right)$
(It might be helpful to observe that 1 is an eigenvalue of G.)
(a) Find the characteristic and minimal polynomials for G and explain how you know that G is diagonalizable over the field \mathbb{R}.
(b) Find eigenspaces W_{1}, W_{2}, and W_{3} that are invariant subspaces for G giving a direct sum decomposition of \mathbb{R}^{4} as $W_{1} \oplus W_{2} \oplus W_{3}$.
(c) Find projections E_{1}, E_{2}, and E_{3} so that $E_{1}+E_{2}+E_{3}=I, E_{i} E_{j}=0$ for $i \neq j$ and $G=a E_{1}+b E_{2}+c E_{3}$ for some real numbers a, b, and c.
* 92. Let T be the linear transformation on \mathbb{R}^{3} represented in the usual basis by the matrix

$$
\left(\begin{array}{rrr}
6 & -3 & -2 \\
4 & -1 & -2 \\
10 & -5 & -3
\end{array}\right)
$$

(a) Express the minimal polynomial for T as $p=p_{1} p_{2}$ where p_{1} and p_{2} are monic and irreducible polynomials over \mathbb{R}.
(b) For both $j=1$ and $j=2$, find a basis \mathcal{B}_{j} for W_{j}, the null space of $p_{j}(T)$.
(c) Find the matrices for T_{1} and T_{2}, the restrictions of T to W_{1} and W_{2}, with respect to these bases, and also find the matrix for T with respect to the basis $\mathcal{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}\right\}$.

* 93. Let S be the linear transformation on \mathbb{R}^{3} represented in the usual basis by the matrix

$$
\left(\begin{array}{rrr}
3 & 1 & -1 \\
2 & 2 & -1 \\
2 & 2 & 0
\end{array}\right)
$$

Show that there are a diagonalizable operator D and a nilpotent operator N on \mathbb{R}^{3} so that $S=D+N$ and $D N=N D$. Find the matrices for D and N in the usual basis for \mathbb{R}^{3}.

* 94. Let T be a linear transformation on a finite dimensional vector space \mathcal{V} that has characteristic polynomial

$$
f=\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \cdots\left(x-c_{k}\right)^{d_{k}}
$$

and minimal polynomial

$$
p=\left(x-c_{1}\right)^{r_{1}}\left(x-c_{2}\right)^{r_{2}} \cdots\left(x-c_{k}\right)^{r_{k}}
$$

Let W_{i} be the null space of $\left(T-c_{i} I\right)^{r_{i}}$.
(a) Prove that W_{i} is an invariant subspace for T.
(b) Letting T_{i} denote the restriction of T to the invariant subspace W_{i}, show that $T_{i}-c_{i} I$ is nilpotent on W_{i} and find its order of nilpotence.
(c) Find the minimal polynomial of T_{i}, the characteristic polynomial of T_{i}, and the dimension of W_{i}.

