April 5

** 81. Look back at exercise 75. You chose a vector 'at random' to use for finding the polynomial q that worked for your vector and a given B. Probably the degree of the polynomial you found from using your vector was 4.

Suppose A is 4×4 matrix with complex entries.
(a) For which v in \mathbb{C}^{4} will $A^{4} v, A^{3} v, A^{2} v, A v$ and $I v$ be linearly dependent? Why?
(b) For which v in \mathbb{C}^{4} will $A v$ and $I v$ be linearly dependent? Why?
(c) For which v in \mathbb{C}^{4} will $A^{2} v, A v$ and $I v$ be linearly dependent? Why?
(d) For which v in \mathbb{C}^{4} will $A^{3} v, A^{2} v, A v$ and $I v$ be linearly dependent? Why?
(e) Explain why it was extremely likely that choosing a vector 'at random' from R^{4} would give a polynomial of degree 4.
82. Let \mathcal{V} be an n-dimensional vector space over the field F. Show that if M is any subspace of \mathcal{V}, there is a subspace L of \mathcal{V} for which $M \oplus L=\mathcal{V}$. Indeed, if \mathcal{V} is \mathbb{R}^{n} or \mathbb{C}^{n}, and $0<\operatorname{dim}(M)<n$, show that there are infinitely many such subspaces.

* 83. Let \mathcal{V} be an n-dimensional vector space over the field F and let $W_{1}, W_{2}, \cdots, W_{k}$ be subspaces of \mathcal{V} such that

$$
\mathcal{V}=W_{1}+W_{2}+\cdots+W_{k} \quad \text { and } \quad \operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)+\cdots+\operatorname{dim}\left(W_{k}\right)
$$

Prove that this means $\mathcal{V}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$.

* 84. Let E be an $n \times n$ matrix over the field F such that $E^{2}=E$.
(a) Show that $I-E$ is also a projection matrix.
(b) If E is described as the projection onto R along N, what is the description of $I-E$?
(c) Let $Q=\left(\begin{array}{rrr}-1 & 2 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 2\end{array}\right)$

Show that Q is a projection and describe Q as in part (b).

* 85. Consider the statement: "If a diagonalizable operator has only eigenvalues 0 and 1 , then it is a projection." If it is true, prove it; if it is false, find an example.
* 86. Let $E_{1}, E_{2}, \cdots, E_{k}$ be projection matrices on \mathbb{R}^{n} for which $E_{1}+E_{2}+\cdots+E_{k}=I$. Use the trace function to show that $E_{i} E_{j}=0$ for $i \neq j$.
* 87. Let E be a projection on the real vector space \mathcal{V}. Prove that $I+E$ is invertible and find $(I+E)^{-1}$.
* 88. Let P and Q be projections on the real vector space \mathcal{V} for which $P Q=Q P$. Prove that $P Q$ is also a projection and find the range and nullspace of $P Q$.

