** 81. Look back at exercise 75. You chose a vector 'at random' to use for finding the polynomial q that worked for your vector and a given B. Probably the degree of the polynomial you found from using your vector was 4.

Suppose A is 4×4 matrix with complex entries.

- (a) For which v in \mathbb{C}^4 will A^4v , A^3v , A^2v , Av and Iv be linearly dependent? Why?
- (b) For which v in \mathbb{C}^4 will Av and Iv be linearly dependent? Why?
- (c) For which v in \mathbb{C}^4 will A^2v , Av and Iv be linearly dependent? Why?
- (d) For which v in \mathbb{C}^4 will A^3v , A^2v , Av and Iv be linearly dependent? Why?
- (e) Explain why it was extremely likely that choosing a vector 'at random' from R^4 would give a polynomial of degree 4.
- 82. Let \mathcal{V} be an *n*-dimensional vector space over the field F. Show that if M is any subspace of \mathcal{V} , there is a subspace L of \mathcal{V} for which $M \oplus L = \mathcal{V}$. Indeed, if \mathcal{V} is \mathbb{R}^n or \mathbb{C}^n , and $0 < \dim(M) < n$, show that there are infinitely many such subspaces.

* 83. Let \mathcal{V} be an *n*-dimensional vector space over the field F and let W_1, W_2, \dots, W_k be subspaces of \mathcal{V} such that

$$\mathcal{V} = W_1 + W_2 + \dots + W_k$$
 and $\dim(V) = \dim(W_1) + \dim(W_2) + \dots + \dim(W_k)$

Prove that this means $\mathcal{V} = W_1 \oplus W_2 \oplus \cdots \oplus W_k$.

- * 84. Let E be an $n \times n$ matrix over the field F such that $E^2 = E$.
 - (a) Show that I E is also a projection matrix.
 - (b) If E is described as the projection onto R along N, what is the description of I E?

(c) Let
$$Q = \begin{pmatrix} -1 & 2 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

Show that Q is a projection and describe Q as in part (b).

- * 85. Consider the statement: "If a diagonalizable operator has only eigenvalues 0 and 1, then it is a projection." If it is true, prove it; if it is false, find an example.
- * 86. Let E_1, E_2, \dots, E_k be projection matrices on \mathbb{R}^n for which $E_1 + E_2 + \dots + E_k = I$. Use the trace function to show that $E_i E_j = 0$ for $i \neq j$.
- * 87. Let E be a projection on the real vector space \mathcal{V} . Prove that I + E is invertible and find $(I + E)^{-1}$.
- * 88. Let P and Q be projections on the real vector space \mathcal{V} for which PQ = QP. Prove that PQ is also a projection and find the range and nullspace of PQ.