March 22

* 68. Recall that we (inductively) defined several determinant functions for $n \times n$ matrices by the formula
$\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} A_{i j} \operatorname{det}(A(i \mid j)$
where $A(i \mid j)$ is the $(n-1) \times(n-1)$ matrix obtained from A by deleting the $i^{t h}$ row and the $j^{\text {th }}$ column. But, since we have proved the determinant function is unique, we conclude they are all the same as the function 'det'. The formula above is called finding the determinant by expansion along the $j^{\text {th }}$ column of A.

The scalar $C_{i j}=(-1)^{i+j} \operatorname{det} A(i \mid j)$ is called the i, j cofactor of A. From the above, we can easily see that $\operatorname{det}(A)=\sum_{i=1}^{n} A_{i j} C_{i j}$. The adjugate matrix of A (also sometimes called the 'classical adjoint' of A) is the matrix $\operatorname{adj}(A)=B$ where $B_{i j}=C_{j i}$, the transpose of the matrix of cofactors.
(a) Let A be an $n \times n$ matrix over the ring K and $\left(b_{1} b_{2} \cdots b_{n}\right)$ be a row vector in K^{n}. Identify an $n \times n$ matrix over K whose determinant is $\sum_{i=1}^{n} b_{i} C_{i j}$.
(b) Using part (a) above, prove that for any ring K, the adjugate matrix satisfies $\operatorname{adj}(A) A=(\operatorname{det}(A)) I$ by recognizing the expansion for each entry as a determinant of a specific matrix.
(c) Show that if K is actually a field \mathbb{F}, then the matrix A is invertible if and only if the determinant of A is not zero and for A with non-zero determinant

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

* 69. Use the ideas of the exercise above, in particular by recognizing a sum as the determinant of a particular matrix, prove

Cramer's Rule: If A is an $n \times n$ matrix over a field \mathbb{F} and $\operatorname{det}(A)$ is not zero, then the unique solution of $A X=b$ is $x_{j}=\operatorname{det}\left(B_{j}\right) / \operatorname{det}(A)$ where B_{j} is the matrix obtained by replacing the j th column of A by b, that is

$$
B_{j}=\left(\begin{array}{lllllll}
C_{1} & \cdots & C_{j-1} & b & C_{j+1} & \cdots & C_{n}
\end{array}\right)
$$

where the columns of A are $C_{1}, C_{2}, \cdots, C_{n}$.

* 70. Let B be an $n \times n$ matrix over the ring K that has block diagonal form:

$$
B=\left(\begin{array}{ccc}
B_{1} & 0 & 0 \\
0 & B_{2} & 0 \\
0 & 0 & B_{3}
\end{array}\right)
$$

where B_{j} is a $d_{j} \times d_{j}$ matrix and $n=d_{1}+d_{2}+d_{3}$.
Prove that $\operatorname{det}(B)=\operatorname{det}\left(B_{1}\right) \operatorname{det}\left(B_{2}\right) \operatorname{det}\left(B_{3}\right)$.
(Although the problem asserts this for 3 blocks, it is true for any finite number of blocks.)
** 71. In class, we proved that if G is an $n \times n$ matrix over K, and P and R are $r \times r$ and $s \times s$ matrices, respectively, where $r+s=n$, then for $G=\left(\begin{array}{cc}P & Q \\ 0 & R\end{array}\right)$, we have $\operatorname{det}(G)=\operatorname{det}(P) \operatorname{det}(R)$.
(a) Prove that if G is an $n \times n$ matrix over K, and P and R are $r \times r$ and $s \times s$ matrices, respectively, and $G=\left(\begin{array}{cc}P & 0 \\ Q & R\end{array}\right)$, then $\operatorname{det}(G)=\operatorname{det}(P) \operatorname{det}(R)$.
(b) Suppose A, B, C, D are commuting $n \times n$ matrices over K. Factor $H=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ into a product of upper and lower triangular block matrices, or otherwise show that

$$
\operatorname{det}(H)=\operatorname{det}(A D-B C)
$$

(c) Give an example of $n \times n$ matrices A, B, C, and D over \mathbb{R} for which $H=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, and $\operatorname{det}(H) \neq \operatorname{det}(A D-B C)$.
** 72. Let $\alpha_{1}, \alpha_{2}, \cdots$, and α_{n} be elements of the ring K and let C be the $n \times n$ matrix over K that has entries $c_{j, j+1}=1$ for $1 \leq j \leq n-1, c_{n, j}=\alpha_{j}$ for $1 \leq j \leq n$ and $c_{i j}=0$ otherwise. That is,

$$
C=\left(\begin{array}{ccccc}
0 & 1 & 0 & & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & & \ddots & \vdots \\
0 & 0 & \cdots & & 1 \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{n}
\end{array}\right)
$$

Find the characteristic polynomial of C.

