NOTES on Connections between Polynomials, Matrices, and Vectors

Throughout this document, \mathcal{V} will be a finite dimensional vector space over the field F, u, v, w, etc., will be vectors in \mathcal{V}, p, q, etc., will be polynomials in $F[x], S, T$, etc., will be linear transformations/operators acting on \mathcal{V} and mapping into \mathcal{V}, and A, B, C, etc., will be matrices with entries in F, but might also be considered the transformation on F^{n} that has the given matrix as its associated matrix with respect to the usual basis for F^{n}. The symbol I will represent the identity transformation or the identity matrix appropriate to the context.

- Characteristic Polynomial: For A an $n \times n$ matrix, the characteristic polynomial of A is the polynomial, p, of degree n given by $p(x)=\operatorname{det}(x I-A)$. The monomial $x-c$ is a factor of p if and only if c is an eigenvalue of A. More generally, if p is factored $p=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ where $p_{1}, p_{2}, \cdots, p_{k}$ are distinct irreducible monic polynomials over F and $r_{1}, r_{2}, \cdots, r_{k}$ are positive integers, then each r_{j} is the dimension of the null space of $p_{j}(T)^{r_{j}}$. The Cayley-Hamilton Theorem says that if p is the characteristic polynomial of T, then $p(T)=0$.
- Minimal Polynomial: The set $\{q \in F[x]: q(A)=0\}$ includes the characteristic polynomial of A, so it is a non-empty set, and it is easy to see that it is an ideal in $F[x]$. The minimal polynomial of A is the monic generator, q, of this ideal. In particular, the minimal polynomial of A divides the characteristic polynomial, and if the characteristic polynomial p is factored $p=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ where $p_{1}, p_{2}, \cdots, p_{k}$ are distinct irreducible monic polynomials over F, then the minimal polynomial q is factored $q=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$ where the s_{j} are positive integers satisfying $s_{j} \leq r_{j}$ for each $j=1, \cdots, k$. Since the minimal polynomial of A satisfies $q(A)=0$, then $A v=0$ for every v in F^{n}.
- T-Annihilator: If T is a linear transformation on \mathcal{V} and v is a vector in \mathcal{V}, then the minimal polynomial of T, q, satisfies $q(T) v=0$. This means the set
$\{f \in F[x]: f(T) v=0\}$ is non-empty, and is clearly an ideal in $F[x]$. The monic generator of this ideal is called the T-annihilator of v. Since the minimal polynomial is in this ideal, the T-annihilator of v must divide the minimal polynomial of T, and this is true for every vector in \mathcal{V}. In addition, Lemma 1 below says that there is a vector in \mathcal{V} for which the minimal polynomial of T is the T-annihilator of this vector.
- Cyclic Subspace: If T is a linear transformation on \mathcal{V} and v is a vector in \mathcal{V}, the cyclic subpace for T generated by v is the set $Z(v, T)=\{g(T) v: g \in F[x]\}$. Since $F[x]$ is closed under addition and multiplication by scalars, the set $Z(v, T)$ is actually a subspace of \mathcal{V} and it is an invariant subspace for T. If v is a vector for which $Z(v, T)=\mathcal{V}$, we say v is a cyclic vector for T. If $v \neq 0$, since \mathcal{V} is a finite dimensional vector space, there is a positive integer k for which $v, T v, \cdots, T^{k-1} v$, are linearly independent and $T^{k} v$ is a linear combination of these vectors. It is easy to see, by induction, that if g is a polynomial and $\operatorname{deg}(g) \geq k$, then $g(T) v$ is also a linear combination of these vectors. This means $Z(v, T)=\operatorname{span}\left\{v, T v, \cdots, T^{k-1} v\right\}$ and the dimension of $Z(v, T)$ is k. Theorem 3 below says that if p_{v} is the T-annihilator of v, then the dimension of $Z(v, T)$ is the degree of p_{v} and that if U is the restriction of T to $Z(v, T)$, then p_{v} is both the minimal and characteristic polynomial for U.
- Conductor: Suppose T is a linear transformation on \mathcal{V}, the subspace W is invariant for T, and v is a vector in \mathcal{V}. The set $\mathcal{S}=\{f \in F[x]: f(T) v \in W\}$ is not the empty set because the minimal polynomial, q, for T satisfies $q(T) v=0$ and q is in this set.

The invariance of W means that $f(T) v$ in W implies $(g f)(T) v=g(T) f(T) v$ is also in W and the set \mathcal{S} is an ideal in $F[x]$. The T-conductor of v into W or, if context
allows, conductor of v into W, denoted $S_{T}(v, W)$, is the monic generator of this ideal. Lemma 2 relates conductors of v into various subspaces and shows that the conductor of v is always a divisor of the minimal polynomial for T.

- Companion Matrix: Suppose W is a k-dimensional invariant subspace for T, a linear transformation on \mathcal{V}. If U is the restriction of T to W and v is vector in W that is cyclic for U, then the companion matrix for U on W is the matrix for U with respect to the basis $v, U v, \cdots, U^{k-1} v$ for W. If p_{v} is the U-annihilator of v, then $p_{v}(x)=x^{k}+c_{k-1} x^{k-1}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}$, and p_{v} is the minimal polynomial and characteristic polynomial for U on W. In particular, this means $U^{k} v=-c_{0} v-c_{1} U v-c_{2} U^{2} v-\cdots-c_{k-1} U^{k-1} v$ and the companion matrix is

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -c_{0} \\
1 & 0 & \cdots & 0 & -c_{1} \\
0 & 1 & & 0 & -c_{2} \\
& \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -c_{k-1}
\end{array}\right)
$$

- Rational Canonical Form: An $n \times n$ matrix A is said to be in rational canonical form if there is a direct sum $F^{n}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{r}$ for which

$$
A=\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & A_{r}
\end{array}\right)
$$

where each A_{j} is a companion matrix for the polynomial p_{j} and for each j with $2 \leq j \leq r$, the polynomial p_{j} divides the polynomial p_{j-1}. In particular, this means p_{1} is the minimal polynomial for A and the characteristic polynomial is $p=p_{1} p_{2} \cdots p_{r}$. It also implies that the W_{j} are cyclic subspaces for A. The Rational Canonical Form Theorem asserts that every linear transformation on a finite dimensional vector space is similar to a unique matrix in rational canonical form.

- Jordan Block with Eigenvalue c : Let c be in the field F and let k be a positive integer. The Jordan block with eigenvalue c and size k is the matrix

$$
J=\left(\begin{array}{cccccc}
c & 0 & 0 & \cdots & 0 & 0 \\
1 & c & 0 & \cdots & 0 & 0 \\
0 & 1 & c & \cdots & 0 & 0 \\
& \vdots & & \ddots & \vdots & \\
0 & 0 & 0 & \cdots & c & 0 \\
0 & 0 & 0 & \cdots & 1 & c
\end{array}\right)
$$

(Some authors call the transpose of this matrix the Jordan block, but the two matrices are similar).

- Jordan Canonical Form: Let A be an $n \times n$ matrix over F whose minimal polynomial factors as a product of linear factors, $q(x)=\left(x-c_{1}\right)^{s_{1}}\left(x-c_{2}\right)^{s_{2}} \cdots\left(x-c_{k}\right)^{s_{k}}$ where the s_{j} are positive integers and the c_{j} are the distinct eigenvalues of A. The matrix A is said to be in Jordan canonical form
if there is a direct sum $F^{n}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{r}$ for which

$$
A=\left(\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & J_{r}
\end{array}\right)
$$

where each J_{ℓ} is a Jordan block of size k_{ℓ} with eigenvalue one of the c_{j} 's. The Jordan Canonical Form Theorem asserts that any $n \times n$ matrix A on F^{n} whose minimal polynomial factors into linear factors, is similar to a matrix in Jordan canonical form and it is unique up to the order of the blocks along the diagonal.

- Admissible Subspace: Let T be a linear transformation on the vector space \mathcal{V} and let W be a subspace of \mathcal{V}. We say W is an admissible subspace for T if W is invariant for T and whenever $f(T) v$ is in W for some vector v in \mathcal{V} and polynomial f, then there is a vector w in W such that $f(T) v=f(T) w$. We note that the subspace $W=(0)$ is admissible for every linear transformation: If $f(T) v \in(0)$, then $f(T) v=0=f(T) 0$.

1. Some Justifications

Lemma 1. Let A be an $n \times n$ matrix with entries in the field F and let q be the minimal polynomial for A. There is a vector v in F^{n} for which the A-annihilator of v is the polynomial q.
Proof. Let $p=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ and $q=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$ be, respectively, the characteristic and minimal polynomials of A where $p_{1}, p_{2}, \cdots, p_{k}$ are distinct irreducible monic polynomials over F and r_{j} and s_{j} are integers with $1 \leq s_{j} \leq r_{j}$. We have seen that \mathcal{V} is a direct sum of the null spaces of the operators $p_{j}(A)_{j}^{r}$ for $j=1, \cdots, k$ so that every vector v can be written as $v=v_{1}+v_{2}+\cdots+v_{k}$ where v_{j} is in the null space of $p_{j}(A)^{r_{j}}$. If u is in the nullspace of $p_{j}(A)^{r_{j}}$, then because q is the minimal polynomial for A, we know that $p_{j}(A)^{s_{j}} u=0$. Moreover, because q is the minimal polynomial, there is no number smaller than s_{j} that works for every vector in nullspace of $p_{j}(A)^{r_{j}}$, that is, there is a vector u_{j} in nullspace of $p_{j}(A)^{s_{j}}$ but not in the nullspace of $p_{j}(A)^{\left(s_{j}-1\right)}$. After finding such vectors for all j, we let $v=u_{1}+u_{2}+\cdots+u_{k}$ and see that q is the A-annihilator of v.

Lemma 2. For \mathcal{V} a finite dimensional vector space, let T be a linear operator on \mathcal{V}. If W_{1} and W_{2} are invariant subspaces for T with $W_{1} \subset W_{2}$ and v is a vector in \mathcal{V}, then the T-conductor of v into W_{2} divides the T-conductor of v into W_{1}. In particular, the T-conductor of any vector into any invariant subspace for T divides the minimal polynomial for T.

Proof. Let J_{1} be the ideal $\left\{f \in F[x]: f(T) v \in W_{1}\right\}$ and J_{2} be the ideal
$\left\{f \in F[x]: f(T) v \in W_{2}\right\}$. Clearly, every polynomial in J_{1} is also a polynomial in J_{2} because $W_{1} \subset W_{2}$. In particular, the T-conductor of v into W_{1}, the monic generator of the ideal J_{1}, is in the ideal J_{2}. This means the monic generator of J_{2}, the conductor of v into W_{2} divides the conductor of v into W_{1}. Since (0) is an invariant subspace for T that is a subspace of any invariant subspace for T and since the minimal polynomial, q, for T satisfies $q(T) v=0$ for all v in \mathcal{V}, the T-conductor of any vector into any subspace divides the minimal polynomial of T.

Theorem 3. Let \mathcal{V} be a finite dimensional vector space and let T be a linear operator on \mathcal{V}. If v is a vector in \mathcal{V} and p_{v} is the T-annihilator of v, then the degree of p_{v} is the dimension of $Z(v, T)$ and if U is the restriction of T to $Z(v, T)$, then p_{v} is both the minimal polynomial and the characteristic polynomial of U on $Z(v, T)$.
Proof. If $p_{v}(x)=x^{k}+c_{k-1} x^{k-1}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}$ is the T-annihilator of v, then $p_{v}(T) v=T^{k} v+c_{k-1} T^{k-1} v+\cdots+c_{2} T^{2} v+c_{1} T v+c_{0} v=0$, but there is no polynomial, q, of degree $k-1$ or less that has $q(T) v=0$. In particular, this means the vectors $T^{k-1} v, \cdots$, $T^{2} v, T v$, and v are linearly independent. On the other hand,
$T^{k} v=-c_{k-1} T^{k-1} v-\cdots-c_{2} T^{2} v-c_{1} T v-c_{0} v$, which means $Z(v, T)$ has the set $\left\{T^{k-1} v, \cdots, T^{2} v, T v, v\right\}$ as a basis. We conclude the dimension of $Z(v, T)$ is the degree of p_{v} and that p_{v} is the minimal and characteristic polynomial of T restricted to the cyclic subspace $Z(v, T)$.

Theorem 4. (Cyclic Decomposition Theorem) Let T be a linear transformation on the finite dimensional vector space \mathcal{V} and let W_{0} be a proper subspace of \mathcal{V} that is admissible for T. There are non-zero vectors $v_{1}, v_{2}, \cdots, v_{r}$ in \mathcal{V} with, respectively, T-annihilators p_{1}, p_{2}, \cdots, p_{r} so that

$$
\begin{equation*}
\mathcal{V}=W_{0} \oplus Z\left(v_{1}, T\right) \oplus Z\left(v_{2}, T\right) \oplus \cdots \oplus Z\left(v_{r}, T\right) \tag{1}
\end{equation*}
$$

and
(2) for $2 \leq j \leq r$, the polynomial p_{j} divides the polynomial p_{j-1}.

Moreover, the integer r and $p_{1}, p_{2}, \cdots, p_{r}$ are uniquely determined by (1) and (2) as long as $v_{j} \neq 0$ for all j.

