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NOTES on Connections between Polynomials, Matrices, and Vectors

Throughout this document, V will be a finite dimensional vector space over the field F
u, v, w, etc., will be vectors in V, p, ¢, etc., will be polynomials in F[z], S, T, etc., will be
linear transformations/operators acting on V and mapping into V, and A, B, C, etc., will be
matrices with entries in F', but might also be considered the transformation on F"™ that has
the given matrix as its associated matrix with respect to the usual basis for F™. The symbol
I will represent the identity transformation or the identity matrix appropriate to the context.

e Characteristic Polynomial: For A an n x n matrix, the characteristic polynomial
of A is the polynomial, p, of degree n given by p(z) = det(zI — A). The monomial
x — ¢ is a factor of p if and only if ¢ is an eigenvalue of A. More generally, if p is
factored p = pi'py? - - -pzk where p1, po, - - -, pi are distinct irreducible monic
polynomials over F' and 71, r9, - -+, 1}, are positive integers, then each r; is the
dimension of the null space of p;(T")"7. The Cayley-Hamilton Theorem says that if p
is the characteristic polynomial of T', then p(T") = 0.

e Minimal Polynomial: The set {q € F[z]: ¢(A) = 0} includes the characteristic
polynomial of A, so it is a non-empty set, and it is easy to see that it is an ideal in
F[x]. The minimal polynomial of A is the monic generator, g, of this ideal. In
particular, the minimal polynomial of A divides the characteristic polynomial, and if
the characteristic polynomial p is factored p = pi'p5* - - - p,* where p1, pa, - - -, pj are
distinct irreducible monic polynomials over F', then the minimal polynomial ¢ is
factored ¢ = pi*p5? - - - p¥ where the s; are positive integers satisfying s; < r; for each
j=1,--- k. Since the minimal polynomial of A satisfies ¢(A) = 0, then Av = 0 for

every v in F™.

e T-Annihilator: If T is a linear transformation on V and v is a vector in V, then the
minimal polynomial of T', ¢, satisfies ¢(T)v = 0. This means the set
{f € Flz] : f(T)v =0} is non-empty, and is clearly an ideal in F[z]. The monic
generator of this ideal is called the T-annihilator of v. Since the minimal polynomial
is in this ideal, the T-annihilator of v must divide the minimal polynomial of T', and
this is true for every vector in V. In addition, Lemma 1 below says that there is a
vector in V for which the minimal polynomial of T" is the T-annihilator of this vector.

e Cyclic Subspace: If T is a linear transformation on ¥V and v is a vector in V, the
cyclic subpace for T' generated by v is the set Z(v,T) = {g(T)v : g € F[z]}. Since
F[z] is closed under addition and multiplication by scalars, the set Z(v,T') is actually
a subspace of V and it is an invariant subspace for T'. If v is a vector for which
Z(v,T) =V, we say v is a cyclic vector for T. If v # 0, since V is a finite dimensional
vector space, there is a positive integer k for which v, T, - - -, T*"lv, are linearly
independent and T%wv is a linear combination of these vectors. It is easy to see, by
induction, that if g is a polynomial and deg(g) > k, then g(T")v is also a linear
combination of these vectors. This means Z(v,T) = span{v, Tv,--- ,T*"1v} and the
dimension of Z(v,T) is k. Theorem 3 below says that if p, is the T-annihilator of v,
then the dimension of Z(v,T) is the degree of p, and that if U is the restriction of T'
to Z(v,T), then p, is both the minimal and characteristic polynomial for U.

e Conductor: Suppose T is a linear transformation on V, the subspace W is invariant
for T', and v is a vector in V. The set S = {f € Flz] : f(T)v € W} is not the empty
set because the minimal polynomial, ¢, for T" satisfies ¢(T)v = 0 and ¢ is in this set.



The invariance of W means that f(T)v in W implies (¢f)(T)v = g(T) f(T)v is also in
W and the set S is an ideal in F[z]. The T-conductor of v into W or, if context
allows, conductor of v into W, denoted St (v, W), is the monic generator of this ideal.
Lemma, 2 relates conductors of v into various subspaces and shows that the conductor
of v is always a divisor of the minimal polynomial for 7.

Companion Matrix: Suppose W is a k-dimensional invariant subspace for T, a
linear transformation on V. If U is the restriction of T" to W and v is vector in W
that is cyclic for U, then the companion matriz for U on W is the matrix for U with
respect to the basis v, Uv, ---, UF"1v for W. If p, is the U-annihilator of v, then
pu(x) = zF 4+ 12" 4+ -+ 2 + c1z + ¢, and p, is the minimal polynomial and
characteristic polynomial for U on W. In particular, this means

Uky = —cov — cqUv — caU?v — - -+ — ¢;;_1U* v and the companion matrix is
0 0 - 0 —cp
1 0 0 —C1
0 1 0 —C9
00 -+ 1 —cp_q

Rational Canonical Form: An n x n matrix A is said to be in rational canonical
form if there is a direct sum F" =W, & Wy & - -- & W, for which

A 0 0
0 A 0

A= ,
0 0 A,

where each A; is a companion matrix for the polynomial p; and for each j with

2 < j <, the polynomial p; divides the polynomial p;_;. In particular, this means
p1 is the minimal polynomial for A and the characteristic polynomial is

p = pip2 - - pr. It also implies that the W} are cyclic subspaces for A. The Rational
Canonical Form Theorem asserts that every linear transformation on a finite
dimensional vector space is similar to a unique matrix in rational canonical form.

Jordan Block with Eigenvalue c¢: Let ¢ be in the field F' and let k£ be a positive
integer. The Jordan block with eigenvalue ¢ and size k is the matrix

c 00 0 0

1 ¢ O 0 0

01 ¢ 0 0
J =

0 00 c 0

0 00 1 ¢

(Some authors call the transpose of this matrix the Jordan block, but the two
matrices are similar).

Jordan Canonical Form: Let A be an n x n matrix over F' whose minimal
polynomial factors as a product of linear factors,

q(z) = (x —c1)* (x — )% - - - (x — ¢)°* where the s; are positive integers and the c¢;
are the distinct eigenvalues of A. The matrix A is said to be in Jordan canonical form



if there is a direct sum F" =Wy @ Wy @ - - - @ W,. for which

J 0 - 0
0 Jp -~ 0
0 0 - J

where each Jy is a Jordan block of size k, with eigenvalue one of the ¢;’s. The Jordan
Canonical Form Theorem asserts that any n x n matrix A on F" whose minimal
polynomial factors into linear factors, is similar to a matrix in Jordan canonical form
and it is unique up to the order of the blocks along the diagonal.

e Admissible Subspace: Let T be a linear transformation on the vector space V and
let W be a subspace of V. We say W is an admissible subspace for T if W is invariant
for T" and whenever f(T")v is in W for some vector v in V and polynomial f, then
there is a vector w in W such that f(T)v = f(T)w. We note that the subspace
W = (0) is admissible for every linear transformation: If f(7)v € (0), then
F(T)yw=0= F(T)0.

1. SOME JUSTIFICATIONS

Lemma 1. Let A be an n X n matriz with entries in the field F' and let ¢ be the minimal
polynomial for A. There is a vector v in F™ for which the A-annihilator of v is the
polynomial q.

Proof. Let p = pi'p4? ---p;* and ¢ = pi*p3? - - - p;* be, respectively, the characteristic and
minimal polynomials of A where p1, po, - - -, pr are distinct irreducible monic polynomials
over F' and r; and s; are integers with 1 < s; < r;. We have seen that V is a direct sum of
the null spaces of the operators p; (A); for j =1,---,k so that every vector v can be written
as v = v] + vg + - - - + v where v; is in the null space of p;(A)". If u is in the nullspace of
pj(A)"7, then because ¢ is the minimal polynomial for A, we know that p;(A)%u = 0.
Moreover, because ¢ is the minimal polynomial, there is no number smaller than s; that
works for every vector in nullspace of p;(A)"7, that is, there is a vector u; in nullspace of
pj(A)% but not in the nullspace of p;(A)&~1. After finding such vectors for all j, we let

v =uq +us + -+ up and see that ¢ is the A-annihilator of v. O

Lemma 2. ForV a finite dimensional vector space, let T' be a linear operator on V. If W1
and Wy are invariant subspaces for T with W1 C Wa and v is a vector in V, then the
T-conductor of v into Wo divides the T-conductor of v into Wy. In particular, the

T-conductor of any vector into any invariant subspace for T divides the minimal polynomial
for T.

Proof. Let Ji be the ideal {f € F[z]: f(T)v € W1} and Jy be the ideal

{f € Flz] : f(T)v € W5}. Clearly, every polynomial in .J; is also a polynomial in J; because
W1 C Ws. In particular, the T-conductor of v into W7, the monic generator of the ideal Ji, is
in the ideal J5. This means the monic generator of Js, the conductor of v into Wy divides the
conductor of v into Wj. Since (0) is an invariant subspace for T' that is a subspace of any
invariant subspace for 7" and since the minimal polynomial, g, for T satisfies ¢(T")v = 0 for all

v in V, the T-conductor of any vector into any subspace divides the minimal polynomial of
T. O



4

Theorem 3. Let V be a finite dimensional vector space and let T be a linear operator on V.
If v is a vector in V and p, is the T-annihilator of v, then the degree of p, is the dimension

of Z(v,T) and if U is the restriction of T to Z(v,T), then p, is both the minimal polynomial
and the characteristic polynomial of U on Z(v,T).

Proof. If p,(z) = ¥ 4+ cp_12* 1 + - + co2? + c12 + ¢p is the T-annihilator of v, then
po(T)v = TFv 4+ cp 1 TF T + - + eaT?v + ¢1Tv + cyv = 0, but there is no polynomial, g, of
degree k — 1 or less that has ¢(T")v = 0. In particular, this means the vectors Th=1y, ...,
T?v, Tv, and v are linearly independent. On the other hand,

TFy = —cp_ 1 T" v — -+ — cT?*v — ¢1Tv — cov, which means Z(v, T) has the set

{kalv, .-, T?v,Tv,v} as a basis. We conclude the dimension of Z(v,T) is the degree of p,
and that p, is the minimal and characteristic polynomial of 7" restricted to the cyclic
subspace Z(v,T). O

Theorem 4. (Cyclic Decomposition Theorem) Let T be a linear transformation on the
finite dimensional vector space V and let Wy be a proper subspace of V that is admissible for

T. There are non-zero vectors vy, va, -+, vy tn V with, respectively, T'-annihilators p1, pa,
-+, pr so that
and

(2) for 2 <45 <wr,  the polynomial p; divides the polynomial p;_;.

Moreover, the integer r and p1, p2, -+, pr are uniquely determined by (1) and (2) as long as
v; # 0 for all j.



