Math 55400

NOTES on Connections between Polynomials, Matrices, and Vectors

Throughout this document, \mathcal{V} will be a finite dimensional vector space over the field F, u, v, w, etc., will be vectors in \mathcal{V} , p, q, etc., will be polynomials in F[x], S, T, etc., will be linear transformations/operators acting on \mathcal{V} and mapping into \mathcal{V} , and A, B, C, etc., will be matrices with entries in F, but might also be considered the transformation on F^n that has the given matrix as its associated matrix with respect to the usual basis for F^n . The symbol I will represent the identity transformation or the identity matrix appropriate to the context.

- Characteristic Polynomial: For A an $n \times n$ matrix, the characteristic polynomial of A is the polynomial, p, of degree n given by $p(x) = \det(xI A)$. The monomial x c is a factor of p if and only if c is an eigenvalue of A. More generally, if p is factored $p = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ where p_1, p_2, \cdots, p_k are distinct irreducible monic polynomials over F and r_1, r_2, \cdots, r_k are positive integers, then each r_j is the dimension of the null space of $p_j(T)^{r_j}$. The Cayley-Hamilton Theorem says that if p is the characteristic polynomial of T, then p(T) = 0.
- Minimal Polynomial: The set $\{q \in F[x] : q(A) = 0\}$ includes the characteristic polynomial of A, so it is a non-empty set, and it is easy to see that it is an ideal in F[x]. The minimal polynomial of A is the monic generator, q, of this ideal. In particular, the minimal polynomial of A divides the characteristic polynomial, and if the characteristic polynomial p is factored $p = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ where p_1, p_2, \cdots, p_k are distinct irreducible monic polynomials over F, then the minimal polynomial q is factored $q = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}$ where the s_j are positive integers satisfying $s_j \leq r_j$ for each $j = 1, \cdots, k$. Since the minimal polynomial of A satisfies q(A) = 0, then Av = 0 for every v in F^n .
- *T*-Annihilator: If *T* is a linear transformation on \mathcal{V} and *v* is a vector in \mathcal{V} , then the minimal polynomial of *T*, *q*, satisfies q(T)v = 0. This means the set $\{f \in F[x] : f(T)v = 0\}$ is non-empty, and is clearly an ideal in F[x]. The monic generator of this ideal is called the *T*-annihilator of *v*. Since the minimal polynomial is in this ideal, the *T*-annihilator of *v* must divide the minimal polynomial of *T*, and this is true for every vector in \mathcal{V} . In addition, Lemma 1 below says that there is a vector in \mathcal{V} for which the minimal polynomial of *T* is the *T*-annihilator of this vector.
- Cyclic Subspace: If T is a linear transformation on \mathcal{V} and v is a vector in \mathcal{V} , the cyclic subpace for T generated by v is the set $Z(v,T) = \{g(T)v : g \in F[x]\}$. Since F[x] is closed under addition and multiplication by scalars, the set Z(v,T) is actually a subspace of \mathcal{V} and it is an invariant subspace for T. If v is a vector for which $Z(v,T) = \mathcal{V}$, we say v is a cyclic vector for T. If $v \neq 0$, since \mathcal{V} is a finite dimensional vector space, there is a positive integer k for which $v, Tv, \cdots, T^{k-1}v$, are linearly independent and $T^k v$ is a linear combination of these vectors. It is easy to see, by induction, that if g is a polynomial and $\deg(g) \geq k$, then g(T)v is also a linear combination of these vectors. This means $Z(v,T) = \operatorname{span}\{v,Tv,\cdots,T^{k-1}v\}$ and the dimension of Z(v,T) is k. Theorem 3 below says that if p_v is the T-annihilator of v, then the dimension of Z(v,T) is the degree of p_v and that if U is the restriction of T to Z(v,T), then p_v is both the minimal and characteristic polynomial for U.
- Conductor: Suppose T is a linear transformation on \mathcal{V} , the subspace W is invariant for T, and v is a vector in \mathcal{V} . The set $\mathcal{S} = \{f \in F[x] : f(T)v \in W\}$ is not the empty set because the minimal polynomial, q, for T satisfies q(T)v = 0 and q is in this set.

The invariance of W means that f(T)v in W implies (gf)(T)v = g(T)f(T)v is also in W and the set S is an ideal in F[x]. The *T*-conductor of v into W or, if context allows, conductor of v into W, denoted $S_T(v, W)$, is the monic generator of this ideal. Lemma 2 relates conductors of v into various subspaces and shows that the conductor of v is always a divisor of the minimal polynomial for T.

• Companion Matrix: Suppose W is a k-dimensional invariant subspace for T, a linear transformation on \mathcal{V} . If U is the restriction of T to W and v is vector in W that is cyclic for U, then the companion matrix for U on W is the matrix for U with respect to the basis $v, Uv, \dots, U^{k-1}v$ for W. If p_v is the U-annihilator of v, then $p_v(x) = x^k + c_{k-1}x^{k-1} + \dots + c_2x^2 + c_1x + c_0$, and p_v is the minimal polynomial and characteristic polynomial for U on W. In particular, this means $U^k v = -c_0v - c_1Uv - c_2U^2v - \dots - c_{k-1}U^{k-1}v$ and the companion matrix is

(0	0		0	$-c_0$	١
	1	0		0	$-c_{1}$	
	0	1		0	$-c_{2}$	
		÷	۰.	÷	÷	
l	0	0		1	$-c_{k-1}$	J

• Rational Canonical Form: An $n \times n$ matrix A is said to be in *rational canonical* form if there is a direct sum $F^n = W_1 \oplus W_2 \oplus \cdots \oplus W_r$ for which

$$A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & A_r \end{pmatrix}$$

where each A_j is a companion matrix for the polynomial p_j and for each j with $2 \leq j \leq r$, the polynomial p_j divides the polynomial p_{j-1} . In particular, this means p_1 is the minimal polynomial for A and the characteristic polynomial is $p = p_1 p_2 \cdots p_r$. It also implies that the W_j are cyclic subspaces for A. The Rational Canonical Form Theorem asserts that every linear transformation on a finite dimensional vector space is similar to a unique matrix in rational canonical form.

• Jordan Block with Eigenvalue c: Let c be in the field F and let k be a positive integer. The Jordan block with eigenvalue c and size k is the matrix

$$J = \begin{pmatrix} c & 0 & 0 & \cdots & 0 & 0 \\ 1 & c & 0 & \cdots & 0 & 0 \\ 0 & 1 & c & \cdots & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & 0 & \cdots & c & 0 \\ 0 & 0 & 0 & \cdots & 1 & c \end{pmatrix}$$

(Some authors call the transpose of this matrix the Jordan block, but the two matrices are similar).

• Jordan Canonical Form: Let A be an $n \times n$ matrix over F whose minimal polynomial factors as a product of linear factors,

 $q(x) = (x - c_1)^{s_1} (x - c_2)^{s_2} \cdots (x - c_k)^{s_k}$ where the s_j are positive integers and the c_j are the distinct eigenvalues of A. The matrix A is said to be in Jordan canonical form

if there is a direct sum $F^n = W_1 \oplus W_2 \oplus \cdots \oplus W_r$ for which

$$A = \begin{pmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_r \end{pmatrix}$$

where each J_{ℓ} is a Jordan block of size k_{ℓ} with eigenvalue one of the c_j 's. The Jordan Canonical Form Theorem asserts that any $n \times n$ matrix A on F^n whose minimal polynomial factors into linear factors, is similar to a matrix in Jordan canonical form and it is unique up to the order of the blocks along the diagonal.

• Admissible Subspace: Let T be a linear transformation on the vector space \mathcal{V} and let W be a subspace of \mathcal{V} . We say W is an admissible subspace for T if W is invariant for T and whenever f(T)v is in W for some vector v in \mathcal{V} and polynomial f, then there is a vector w in W such that f(T)v = f(T)w. We note that the subspace W = (0) is admissible for every linear transformation: If $f(T)v \in (0)$, then f(T)v = 0 = f(T)0.

1. Some Justifications

Lemma 1. Let A be an $n \times n$ matrix with entries in the field F and let q be the minimal polynomial for A. There is a vector v in F^n for which the A-annihilator of v is the polynomial q.

Proof. Let $p = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ and $q = p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k}$ be, respectively, the characteristic and minimal polynomials of A where p_1, p_2, \cdots, p_k are distinct irreducible monic polynomials over F and r_j and s_j are integers with $1 \leq s_j \leq r_j$. We have seen that \mathcal{V} is a direct sum of the null spaces of the operators $p_j(A)_j^r$ for $j = 1, \cdots, k$ so that every vector v can be written as $v = v_1 + v_2 + \cdots + v_k$ where v_j is in the null space of $p_j(A)^{r_j}$. If u is in the nullspace of $p_j(A)^{r_j}$, then because q is the minimal polynomial for A, we know that $p_j(A)^{s_j}u = 0$. Moreover, because q is the minimal polynomial, there is no number smaller than s_j that works for every vector in nullspace of $p_j(A)^{r_j}$, that is, there is a vector u_j in nullspace of $p_j(A)^{s_j}$ but not in the nullspace of $p_j(A)^{(s_j-1)}$. After finding such vectors for all j, we let $v = u_1 + u_2 + \cdots + u_k$ and see that q is the A-annihilator of v.

Lemma 2. For \mathcal{V} a finite dimensional vector space, let T be a linear operator on \mathcal{V} . If W_1 and W_2 are invariant subspaces for T with $W_1 \subset W_2$ and v is a vector in \mathcal{V} , then the T-conductor of v into W_2 divides the T-conductor of v into W_1 . In particular, the T-conductor of any vector into any invariant subspace for T divides the minimal polynomial for T.

Proof. Let J_1 be the ideal $\{f \in F[x] : f(T)v \in W_1\}$ and J_2 be the ideal $\{f \in F[x] : f(T)v \in W_2\}$. Clearly, every polynomial in J_1 is also a polynomial in J_2 because $W_1 \subset W_2$. In particular, the *T*-conductor of v into W_1 , the monic generator of the ideal J_1 , is in the ideal J_2 . This means the monic generator of J_2 , the conductor of v into W_2 divides the conductor of v into W_1 . Since (0) is an invariant subspace for T that is a subspace of any invariant subspace for T and since the minimal polynomial, q, for T satisfies q(T)v = 0 for all v in \mathcal{V} , the T-conductor of any vector into any subspace divides the minimal polynomial of T.

Theorem 3. Let \mathcal{V} be a finite dimensional vector space and let T be a linear operator on \mathcal{V} . If v is a vector in \mathcal{V} and p_v is the T-annihilator of v, then the degree of p_v is the dimension of Z(v,T) and if U is the restriction of T to Z(v,T), then p_v is both the minimal polynomial and the characteristic polynomial of U on Z(v,T).

Proof. If $p_v(x) = x^k + c_{k-1}x^{k-1} + \dots + c_2x^2 + c_1x + c_0$ is the *T*-annihilator of *v*, then $p_v(T)v = T^kv + c_{k-1}T^{k-1}v + \dots + c_2T^2v + c_1Tv + c_0v = 0$, but there is no polynomial, *q*, of degree k - 1 or less that has q(T)v = 0. In particular, this means the vectors $T^{k-1}v, \dots, T^2v, Tv$, and *v* are linearly independent. On the other hand, $T^kv = -c_{k-1}T^{k-1}v - \dots - c_2T^2v - c_1Tv - c_0v$, which means Z(v,T) has the set $\{T^{k-1}v, \dots, T^2v, Tv, v\}$ as a basis. We conclude the dimension of Z(v,T) is the degree of p_v and that p_v is the minimal and characteristic polynomial of *T* restricted to the cyclic subspace Z(v,T).

Theorem 4. (Cyclic Decomposition Theorem) Let T be a linear transformation on the finite dimensional vector space \mathcal{V} and let W_0 be a proper subspace of \mathcal{V} that is admissible for T. There are non-zero vectors v_1, v_2, \dots, v_r in \mathcal{V} with, respectively, T-annihilators p_1, p_2, \dots, p_r so that

(1) $\mathcal{V} = W_0 \oplus Z(v_1, T) \oplus Z(v_2, T) \oplus \cdots \oplus Z(v_r, T)$

and

(2) for $2 \le j \le r$, the polynomial p_j divides the polynomial p_{j-1} .

Moreover, the integer r and p_1, p_2, \dots, p_r are uniquely determined by (1) and (2) as long as $v_i \neq 0$ for all j.