NOTES and Comments on Inner Products and Operators on Inner Product Spaces

Throughout this document, \mathcal{V} will be a finite dimensional vector space over the field \mathbb{C} or \mathbb{R}, u, v, w, etc., will be vectors in \mathcal{V}, S, T, etc., will be linear transformations/operators acting on \mathcal{V} and mapping into \mathcal{V}, and A, B, C, etc., will be real or complex matrices, but might also be considered the transformation on \mathbb{C}^{n} that has the given matrix as its associated matrix with respect to the usual basis for \mathbb{C}^{n}. The symbol I will represent the identity transformation or the identity matrix appropriate to the context. References will be to Linear Algebra for Engineering and Science, Cowen, 1995. After the notes and comments section, there is a list of important things from that book, which I hope to cover in class, to know for the course Final Exam, as well as the Qualifying Exams I might write. At the end of this document, there is a list of un-starred! problems from that book that might help review material from your undergraduate course.

- Section 4.2: Most of the material in this section are things I would expect to have been in your undergrad course.
- Section 4.3: I would expect Gram-Schmidt orthogonalization to have been in your undergrad course. Probably QR-factorization was not in your undergrad course, and we will not discuss it either. The take-away message, however, is important: In any inner product space, for any well-ordered spanning set for a subspace W, applying the Gram-Schmidt algorithm leads to a well-ordered orthonormal basis for W.

Core Material

- Section 4.4: Definition of orthogonal complement, Thm. 4.18 on properties of orthogonal complements, Thm. 4.19 relationships between ranges and null spaces of matrices in an inner product space.
- Section 6.1: Thm. 6.1, for any subspace W, decomposition of \mathcal{V} into a direct sum of W and W^{\perp}; closest points. Definition of orthogonal projections. Thm. 6.5 orthogonal projection onto a subspace. Thm. 6.6 characterization of orthogonal projections.
- Section 9.1: Definitions of unitary, Hermitian (self-adjoint, symmetric). Thm. 9.4 Schur's Triangularization Theorem
- Section 9.2: Thm. 9.5, 9.6 eigenvalues and eigenvectors of Hermitian matrices Thm. 9.7 unitary diagonalization of Hermitian matrices and corollaries.
- Section 9.3: Definition of normal matrices. Thm. 9.14 eigenvalues and eigenvectors of normal matrices. Thm. 9.17 spectral theorem for normal matrices.

Suggested Review (no-star) Problems

Page 193, Section 4.2: 22, 23, 24, 29
Page 201, Section 4.3: 5
Page 213, Section 4.4: 17, 18, 19
Page 252, Section 6.1: 3, 4, 5, 7
Page 343, Section 9.1: 1, 2, 7, 8
Page 352, Section 9.2: 1, 2, 3ab, 4, 6
Page 358, Section 9.3: 2, 3, 6

