NAME:

Math 53000

 $(20 \ points)$

Test II

April 10, 2014

There are 5 questions, 5 pages, and 100 points on this test. No calculators, No books, No notes, Ask for scrap paper if you need it, \cdots Test ends at 4:20p.

- 1. Let f and g be holomorphic and non-constant on the punctured disk $0 < |z z_0| < 1$
 - for some z_0 in \mathbb{C} . Suppose, in addition, that $\lim_{z\to z_0} f(z) = \lim_{z\to z_0} g(z) = 0$.
 - (a) What kind of singularities do f and g have at z_0 ? Explain how you know.
 - (b) Prove that if either $\lim_{z\to z_0} f'(z) \neq 0$ OR $\lim_{z\to z_0} g'(z) \neq 0$, then

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}$$

(c) Prove there is a positive integer k, $\lim_{z\to z_0} f^{(k)}(z) \neq 0$, where $f^{(k)}$ denotes the k^{th} derivative of f.

2. For *n* a positive integer, let a_1, a_2, \dots, a_n be points on the unit circle (that is, the circle of radius 1 with center at the origin) and let *p* be the polynomial $p(z) = \prod_{k=1}^{n} (z - a_k)$.

- (a) Find |p(0)|.
- (b) Prove that there is a point z_0 on the unit circle such that $|p(z_0)| = 1$.
- (20 points) 3. Evaluate:

$$\int_{-\infty}^{\infty} \frac{x^2 - 1}{1 + x^4} \, dx$$

(20 points) 4. The function h is holomorphic in the entire plane, except for a singularity at z = 0. There are M_1 and M_2 , positive numbers, and a positive integer n

such that
$$|h(z)| \le \frac{M_1}{|z|^n}$$
 for $0 < |z| < 2$
and $|h(z)| \le M_2$ for $1 < |z| < \infty$.

- (a) Give as complete a description as you can, as well as giving reasons for the parts of the description, for the Laurent series for h centered at 0.
- (b) Use this description to classify the possible kinds of singularity h has at 0.

(20 points) 5. Evaluate the integral $\int_0^\infty \frac{1}{(1+x)\sqrt{x}} dx$

by integrating a suitable complex valued function along the piecewise smooth curve, oriented counterclockwise, surrounding the region consisting of the annulus $\{z : 1/R \le |z| \le R\}$ with the part of the annulus in the rectangle $\{z = x + iy : 0 < x < R \text{ and } -1/R^2 < y < 1/R^2\}$ removed (see the diagram).

In your write up, you may skip the details such as showing that the integral along the line segment just above the x-axis converges properly to the integral along the axis, and the integral on the circle near the origin differs from the integral of $1/\sqrt{z}$ along the circle by an error converging to zero.