\qquad

There are 5 questions, 5 pages, and 100 points on this test.
No calculators, No books, No notes, Ask for scrap paper if you need it, \ldots Test ends at 4:20p.

1. Let f and g be holomorphic and non-constant on the punctured disk $0<\left|z-z_{0}\right|<1$
(20 points) for some z_{0} in \mathbb{C}. Suppose, in addition, that $\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} g(z)=0$.
(a) What kind of singularities do f and g have at z_{0} ? Explain how you know.
(b) Prove that if either $\lim _{z \rightarrow z_{0}} f^{\prime}(z) \neq 0 \quad O R \quad \lim _{z \rightarrow z_{0}} g^{\prime}(z) \neq 0$, then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}
$$

(c) Prove there is a positive integer $k, \lim _{z \rightarrow z_{0}} f^{(k)}(z) \neq 0$, where $f^{(k)}$ denotes the $k^{\text {th }}$ derivative of f.
2. For n a positive integer, let $a_{1}, a_{2}, \cdots, a_{n}$ be points on the unit circle (that is, the circle of radius 1 with center at the origin) and let p be the polynomial $p(z)=\prod_{k=1}^{n}\left(z-a_{k}\right)$.
(a) Find $|p(0)|$.
(b) Prove that there is a point z_{0} on the unit circle such that $\left|p\left(z_{0}\right)\right|=1$.
(20 points)
3. Evaluate:

$$
\int_{-\infty}^{\infty} \frac{x^{2}-1}{1+x^{4}} d x
$$

(20 points) 4. The function h is holomorphic in the entire plane, except for a singularity at $z=0$. There are M_{1} and M_{2}, positive numbers, and a positive integer n

$$
\begin{gathered}
\text { such that }|h(z)| \leq \frac{M_{1}}{|z|^{n}} \text { for } 0<|z|<2 \\
\text { and }|h(z)| \leq M_{2} \text { for } 1<|z|<\infty .
\end{gathered}
$$

(a) Give as complete a description as you can, as well as giving reasons for the parts of the description, for the Laurent series for h centered at 0 .
(b) Use this description to classify the possible kinds of singularity h has at 0 .
(20 points)
5. Evaluate the integral $\int_{0}^{\infty} \frac{1}{(1+x) \sqrt{x}} d x$
by integrating a suitable complex valued function along the piecewise smooth curve, oriented counterclockwise, surrounding the region consisting of the annulus $\{z: 1 / R \leq|z| \leq R\}$ with the part of the annulus in the rectangle $\left\{z=x+i y: 0<x<R\right.$ and $\left.-1 / R^{2}<y<1 / R^{2}\right\}$ removed (see the diagram).

In your write up, you may skip the details such as showing that the integral along the line segment just above the x-axis converges properly to the integral along the axis, and the integral on the circle near the origin differs from the integral of $1 / \sqrt{z}$ along the circle by an error converging to zero.

