\qquad

There are 5 questions, 5 pages, and 100 points on this test.
No calculators, No books, No notes, Ask for scrap paper if you need it, \ldots Test ends at 4:20p.
(20 points) 1. Let f be a complex-valued function defined on an open set G in the plane and let a be a point in G.
(a) Define: The function f is complex differentiable at a.
(b) Let $G=\mathbb{C}$, let $a=1$, and let $f(z)=i \operatorname{Re}\left(z^{2}\right)$.

The function f IS IS NOT complex differentiable at $a=1$. (circle one!!)
Using the Definition (but NOT consequences of the definition like the Cauchy-Riemann Equations, etc.), prove that your assertion about the differentiability at $a=1$ of the function f is correct.
(20 points)
2. (a) Find a linear fractional map that takes the open disk with center $1+i$ and radius $\sqrt{2}$, that is, $G=\{z:|z-(1+i)|<\sqrt{2}\}$, onto the half-plane $H=\{w: \operatorname{Re}(w)<1\}$. Explain how you know the function you created accomplishes this goal.
(b) Find the inverse of the linear fractional map you created above.
(20 points) 3. Let g be defined by the power series $g(z)=\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}(z+1)^{n}$
(a) Find the largest open set E on which the power series for h converges absolutely.
(b) Prove that $g(z)$ is a real number when z is in the set $E \cap \mathbb{R}$. (Give reasons that justify your calculations!)
(20 points) 4. (a) Write the functions $\cos (z)$ and $\sin (z)$ in terms of the exponential function.
(b) Describe the cosine function on the imaginary axis, that is, describe the curve $\cos (i t)$ as t varies from $-\infty$ to ∞.
(c) Describe the sine function on the imaginary axis, that is, describe the curve $\sin (i t)$ as t varies from $-\infty$ to ∞.
(20 points) 5. Let p be the polynomial $p(z)=z^{2}+z-6$.
(a) Find the power series for p centered at $z=2$, that is, find the coefficients a_{n} so that $p(z)=\sum_{n=0}^{\infty} a_{n}(z-2)^{n}$.
(b) Observe that $p(2)=0$. Verify a fact about p that implies there is a branch q of the inverse of p that is holomorphic in a neighborhood of 0 so that $q(0)=2$.
(c) Find the first four coefficients of the power series for this branch of the inverse of p, that is, find coefficients b_{0}, b_{1}, b_{2}, and b_{3} so that $q(w)=\sum_{k=0}^{\infty} b_{k} w^{k}$ is holomorphic in a neighborhood of 0 , satisfies $q(0)=2$, and $q(p(z))=z=2+(z-2)+0(z-2)^{2}+0(z-2)^{3}+\cdots$.

