Professor Carl Cowen

Math 53000
Spring 14

PROBLEMS

Note: The dates in this problem list indicate the dates by which you should have answered/thought about these questions.

Note: $*$ indicates a problem that will be graded. $* *$ indicates a problem that will be handed in separately, graded, and has opportunity to be corrected (once).

January 21 (NOTE: There will be a quiz over this material the last 15 minutes of class on January 21.)

1. Let $z=4-5 i$.

Find: (a) $\operatorname{Re}(z)$
(b) $\operatorname{Im}(z)$
(c) $|z|$
(d) \bar{z}.
2. Compute:
(a) $(3+2 i)(2-i)+i(-2+i)$
(b) $(2-3 i)^{2}(4+2 i)$
(c) $(2-i)^{2}+(1+3 i)^{2}$
(d) $(\overline{(2-i)})^{2}+(\overline{(1+3 i)})^{2}$ see (c)
(e) $\frac{1}{3+4 i}$
(f) $\frac{4-2 i}{1+i}$
(g) $\frac{2+3 i}{(2-i)^{2}}+\frac{i}{1+i}$
(h) $\left|\frac{1+3 i}{(2-i)}\right|$.
3. Find all of the complex numbers that deserve to be called $\sqrt{5-2 i}$. How many are there?
4. Find all (3) roots of the equation $z^{3}-3 z^{2}+7 z-5=0$.
5. Prove that if p is a polynomial with real coefficients and r is a root of p, then \bar{r} is also a root of p.
6. Suppose that $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$, where $a_{n} a_{0} \neq 0$, is a polynomial with roots $r_{1}, r_{2}, \cdots, r_{n-1}, r_{n}$. Let $q(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}$. Find the roots of q and prove that your answer is correct.
7. Use the definition of the complex numbers as ordered pairs of real numbers, $z=(r, s)$ and plus, + , and times, $*$, defined by

$$
z_{1}+z_{2}=\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right) \text { and } z_{1} * z_{2}=\left(r_{1}, s_{1}\right) *\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}-s_{1} s_{2}, r_{1} s_{2}+r_{2} s_{1}\right)
$$

and the usual properties of real number arithmetic, prove the associative law for complex multiplication.
8. Prove that $-\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right|$.
9. Prove that if $\left|z_{1}\right|=1$ and $z_{1} \neq z_{2}$, then $\left|\frac{z_{1}-z_{2}}{1-\overline{z_{2}} z_{1}}\right|=1$.
10. Prove that if $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$, then $\left|\frac{z_{1}-z_{2}}{1-\overline{z_{2}} z_{1}}\right|<1$.
11. Show that $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$. If we think of z_{1} and z_{2} as vectors in the plane, what does this mean geometrically?
12. Find all third and fourth roots of i.
13. Prove that for each positive integer $n \geq 2$, the sum of the $n^{\text {th }}$ roots of unity is 0 .
14. Let $w \neq 1$ be an $n^{\text {th }}$ root of 1 . Calculate:
(a) $1+2 w+3 w^{2}+\cdots+n w^{n-1}$
(b) $1+4 w+9 w^{2}+\cdots+n^{2} w^{n-1}$
(Hint: Multiply by $1-w$.)
15. (a) Show that if t is a real number, then $\left|\frac{1+i t}{1-i t}\right|=1$.
(b) Show that if $|z|=1$ and $z \neq-1$, then there is a real number t so that $z=\frac{1+i t}{1-i t}$.
16. If z is in $\partial \mathbb{D}$, that is, $|z|=1$, then $f(z)=\frac{2 z+i}{(1-2 i) z-3}$ lies on a circle in the complex plane, \mathbb{C}. Find the center and the radius of this circle.
17. Show that the set $\Gamma=\{z \in \mathbb{C}:|z-3+4 i|+|z+2|=7\}$ is non-empty and describe the set geometrically.
18. Give a geometric description of the set $\{z \in \mathbb{C}: \operatorname{Re}(2+3 i) z \geq 1\}$.

Stereographic projection/extended complex plane/Riemann sphere

The extended complex plane or Riemann sphere is the set $\mathbb{C} \cup\{\infty\}$, that is, the complex plane together with the 'point at infinity'.

A concrete construction of this object is given by stereographic projection of the unit sphere in \mathbb{R}^{3}, that is, $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ onto the complex plane \mathbb{C}, thought of as the plane $\{(x, y, 0): x, y \in \mathbb{R}\}$ where $z=x+i y$, with the mapping of the plane onto the sphere, except the 'North pole', $(0,0,1)$, by taking the point $(x, y, 0)$ on the plane to the point of the sphere where the line, ℓ, in \mathbb{R}^{3} through $(0,0,1)$ and $(x, y, 0)$ intersects the sphere. The function $\gamma(t)=(1-t)(0,0,1)+t(x, y, 0)=(t x, t y, 1-t)$ parametrizes the line ℓ, and the point at which it intersects the sphere is the point for which $(t x)^{2}+(t y)^{2}+(1-t)^{2}=1$, or

$$
1=t^{2}\left(x^{2}+y^{2}\right)+(1-t)^{2}=t^{2}|z|^{2}+(1-t)^{2}
$$

which gives $t=0$, the 'North pole', or $t=2 /\left(1+|z|^{2}\right)$. That is,

$$
z \mapsto\left(\frac{2 \operatorname{Re} z}{|z|^{2}+1}, \frac{2 \operatorname{Im} z}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right) \quad \text { and } \quad(\alpha, \beta, \gamma) \mapsto \frac{\alpha+\beta i}{1-\gamma}
$$

for z in the complex plane and $(\alpha, \beta, \gamma) \neq(0,0,1)$ in the sphere. In the extended complex plane, the point ∞ corresponds to the 'North pole' in the sphere, so the extended complex plane is identified with the unit sphere in \mathbb{R}^{3}. The unit sphere is a compact subset of \mathbb{R}^{3} and inherits a topology, that is a collection of open subsets, from \mathbb{R}^{3} and it is not hard to see that the usual (Euclidean) topology on the complex plane thought of as identified with \mathbb{R}^{2} and the topology on the sphere without the north pole are the same.
19. Which points in the plane correspond to $(0,0,-1)$? to the equator of the sphere?, to a circle on the sphere that passes through $(0,0,1)$? What points in the sphere correspond to circles with center 0 in the plane? the half disk $\{z \in \mathbb{C}:|z| \leq 1$ and $\operatorname{Im}(z) \geq 0\}$?
20. Which sequences $\left(z_{n}\right)_{n=1}^{\infty}$ in \mathbb{C} correspond, under the stereographic projection, $z_{n} \leftrightarrow p_{n}$, to sequences $\left(p_{n}\right)_{n=1}^{\infty}$ in the unit sphere to sequences that converge to ($0,0,1$)? In other words if $z_{n} \leftrightarrow p_{n}$ find conditions so that the sequence $\left(z_{n}\right)$ satisfies these conditions if and only if $\lim _{n \rightarrow \infty} p_{n}=(0,0,1)$.

January 30

* 21.

Let $\gamma(t)=(3+2 i) t+(2-i) t^{2}$ for $-1 \leq t \leq 1$ and let $\Gamma=\{\gamma(t):-1 \leq t \leq 1\}$
which is a smooth curve in \mathbb{C}.
(a) Find a parametrization of the line ℓ_{1} tangent to the curve Γ at $\gamma(0)$.
(b) Find a parametrization of the line ℓ_{2} tangent to the curve Γ at $\gamma(.5)$.
(c) Find the angles between the real axis and these tangent lines.
** 22.
Let G be an open, non-empty subset of \mathbb{C}, let γ be a differentiable function mapping the interval $[-1,1]$ into G, that is, the set $\Gamma=\{\gamma(t):-1 \leq t \leq 1\}$ is a smooth curve in G.
(a) Find a parametrization of the line tangent to the curve Γ at $\gamma(0)$
(b) Find the angle between the real axis and this tangent line.
(c) Suppose h is a complex valued function that is differentiable in G. Then $h(\Gamma)$ is a smooth curve in $h(G)$. Find a parametrization of the line tangent to $h(\Gamma)$ at the point $h(\gamma(0))$.
(d) Find the angle between the real axis and the line tangent to $h(\Gamma)$ at the point $h(\gamma(0))$.

* 23.

For which real numbers a, b, c, and d is the function $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ harmonic on \mathbb{C} ? For the cases in which u is harmonic, find a harmonic conjugate, v, of u.
24. Prove that if u is harmonic and v is a harmonic conjugate of u, then $u v$ and $u^{2}-v^{2}$ are both harmonic, but u^{2} harmonic implies u is constant.

For problems 25 to $28, a, b, c$, and d are complex numbers with $a d-b c \neq 0$ and φ is the linear fractional map $\varphi(z)=\frac{a z+b}{c z+d}$. Let $\widehat{\mathbb{C}}$ denote the Riemann sphere and for $c=0$, regard $\varphi(\infty)$ as ∞, and for $c \neq 0$, regard $\varphi(\infty)$ as a / c and $\varphi(-d / c)$ as ∞.

* 25.

Show that the linear fractional map φ is injective, that is, one-to-one, on $\widehat{\mathbb{C}}$.
26. Show that $\psi(z)=\frac{d z-b}{-c z+a}$ is the inverse of φ, that is, $\psi(\varphi(z))=z$ and $\varphi(\psi(z))=z$ for each z in $\widehat{\mathbb{C}}$. We will write φ^{-1} for ψ.

* 27.

Show that if z_{1}, z_{2}, and z_{3} are three distinct points in $\widehat{\mathbb{C}}$, then there is a unique linear fractional map ζ so that $\zeta\left(z_{1}\right)=0, \zeta\left(z_{2}\right)=1$, and $\zeta\left(z_{3}\right)=\infty$. Conclude, by using $\eta^{-1} \circ \zeta$ where η is a linear fractional map that takes w_{1}, w_{2}, and w_{3} onto 0,1 , and ∞, that for any distinct points z_{1}, z_{2}, and z_{3}, and distinct points w_{1}, w_{2}, and w_{3}, there is a unique linear fractional map φ with $\varphi\left(z_{1}\right)=w_{1}, \varphi\left(z_{2}\right)=w_{2}$, and $\varphi\left(z_{3}\right)=w_{3}$.

* 28.

Find a linear fractional map φ that takes the real axis onto itself, and the unit disk, $\mathbb{D}=\{z:|z|<1\}$, onto the half-plane $\{w: \operatorname{Re}(w)>2\}$.

February 6

* 29.

Show that every linear fractional $\operatorname{map} \varphi$ has one or two fixed points in $\widehat{\mathbb{C}}$ and that if there is only one fixed point, p, then $\varphi^{\prime}(p)=1$. (This is the condition for a 'fixed point of multiplicity two' (or more).)
30. Given four distinct points z_{1}, z_{2}, z_{3}, and z_{4} in $\widehat{\mathbb{C}}$, their cross ratio, denoted $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$, is defined to be the image of z_{4} under the linear fractional transformation that sends z_{1}, z_{2}, and z_{3} respectively to $\infty, 0$, and 1 . Prove that if φ is any linear fractional transformation, then $\left(\varphi\left(z_{1}\right), \varphi\left(z_{2}\right) ; \varphi\left(z_{3}\right), \varphi\left(z_{4}\right)\right)=\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$.

* 31.

Let ψ be the linear fractional map such that $\psi(\infty)=1$ and has i and $-i$ as fixed points. Find $\psi(\{z: \operatorname{Re}(z)>0\})$ and also find $\psi(\mathbb{D})$, where \mathbb{D} is the open unit disk.

* 32.

(a) Prove that $\varphi(z)$ is a linear fractional map of the half-plane $\{z: \operatorname{Im}(z)>0\}$ onto itself if and only if there are a, b, c, and d real numbers with $a d-b c=1$ such that $\varphi(z)=\frac{a z+b}{c z+d}$. Conclude that the set of such linear fractional maps forms a group under composition.
(b) Show that the set of φ such that a, b, c, and d are integers with $a d-b c=1$ form a subgroup of the group in part (a). This group is known as the Modular Group and is important in number theory, geometry, and automorphic forms.

* 33.

Prove that the linear fractional transformations mapping the disk \mathbb{D} onto itself are those of the form $\varphi(z)=\lambda \frac{z-z_{0}}{1-\overline{z_{0}} z}$ for some $|\lambda|=1$ and $\left|z_{0}\right|<1$.
34. Find the image under the linear fractional map $\varphi(z)=\frac{z-1}{z+1}$ of the intersection of \mathbb{D} with $\{z: \operatorname{Im}(z)>0\}$.
35. Find all linear fractional transformations that fix 1 and -1 . Is this group abelian? Can you identify this group?
** 36.
Let $\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$.
(a) Show the series for exp converges for every z in \mathbb{C}.
(b) Give a careful proof that $\exp (a+b)=\exp (a) \exp (b)$ for all complex numbers a and b.

February 13

* 37.

Prove: If $\left(b_{k}\right)_{k=1}^{\infty}$ is a sequence of complex numbers with $\lim _{k \rightarrow \infty} b_{k}=L \neq \infty$, then for $a_{n}=\frac{1}{n}\left(b_{1}+b_{2}+\cdots+b_{n}\right)$, we have $\lim _{n \rightarrow \infty} a_{n}=L$ also.

* 38.

Prove the Limit Comparison Test: If $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ are sequences of positive real numbers with $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$, where $0<L<\infty$, then either both series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge or both series diverge. As a corollary, prove that if

$$
\sum_{n=0}^{\infty} c_{n}(z-a)^{n} \quad \text { and } \quad \sum_{n=0}^{\infty} d_{n}(z-a)^{n}
$$

are power series for which $\left|c_{n}\right|$ and $\left|d_{n}\right|$ satisfy the hypotheses of the limit comparison test, then the power series have the same radius of convergence.

* 39.

Prove that the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} n a_{n} z^{n-1}$ have the same radius of convergence.
40. Use 'long division' to divide 1 by $1+z+z^{2}\left(N O T z^{2}+z+1!!\right)$ to get a power series for $\frac{1}{1+z+z^{2}}$. Then factor your answer, add the resulting series, and thereby convince yourself that your answer was correct!
41. Find formulas for the sums of the series:
(a) $\sum_{n=0}^{\infty}(n+1) z^{n}$
(c) $\sum_{n=1}^{\infty} n^{2} z^{n}$
(b) $\sum_{n=1}^{\infty} n z^{n}$
(d) $\sum_{n=0}^{\infty}\left(2^{-n}+3^{-n}\right) z^{n}$

* 42.

In problem 36 , we defined $\exp (z)=1+z+\frac{z^{2}}{2!}+\cdots$ which implies $\exp (0)=1$. Suppose λ is a function defined near 1 with $\lambda(1)=0$ and $\lambda(\exp (z))=z$ for z near 0 .
(a) Assuming λ has a power series expansion near 1 , so that $\lambda(w)=c_{1}(w-1)+$ $c_{2}(w-1)^{2}+c_{3}(w-1)^{3}+\cdots$, what must the coefficients c_{j} be for $\lambda(\exp (z))=z$.
(b) What is the radius of convergence of the power series for λ.
** 43.
Suppose $0<|s|<1$ and $\varphi(z)=s z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ where the power series for φ converges in a disk containing \mathbb{D}.
(a) Show that if $f(z)=b_{0}+b_{1} z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ then it is possible to find each of the coefficients of the composite function $g(z)=f(\varphi(z))$ in finite time (although usually the time increases as n increases).
(b) Find necessary conditions on λ and f for the functional equation $f(\varphi(z))=\lambda f(z)$ to have a solution: Find a theorem If f is a solution of $f(\varphi(z))=\lambda f(z)$, then \cdots.

February 20

* 44.

Show that there are two branches of the function $f(z)=\sqrt{z^{2}-1}$ that are defined and continuous on the set $\Omega=\mathbb{C} \backslash[-1,1]=\{z:|z+1|+|z-1|>2\}$. Labeling f_{+}the branch with value $f_{+}(2.6)=2.4$ and f_{-}the branch with value $f_{-}(2.6)=-2.4$. Choose three positive real numbers, r, s, and t so that $z_{1}=r i, z_{2}=-s, z_{3}=-t i$ are in Ω and compute the values of the branches $f_{+}\left(z_{j}\right)$ and $f_{-}\left(z_{j}\right)$ for $j=1,2$, and 3 .

* 45.

Find a suitable domain, Ω_{0}, (i.e. Ω_{0} is an open, connected, non-empty set) on which the three branches of the function $g(z)=\sqrt[3]{z^{3}}$ are defined, continuous, and holomorphic, and describe the branches of g on this domain. If Ω_{0} is not maximal, that is, if there is a domain $\Omega \neq \Omega_{0}$ such that $\Omega \supset \Omega_{0}$ and the three branches are holomorphic and single valued on Ω, then find a maximal domain.
(Hint: One way to do this is to realize that if $w=w(z)$ is a branch of g, then $w^{3}=z^{3}$. Then, you can solve this equation for w in terms of z.)
** 46.
The function $B(z)=z\left(\frac{z^{2}-1 / 4}{1-z^{2} / 4}\right)$ is a 3-to-1 mapping of the unit disk \mathbb{D} onto itself. For example, we have $B(0)=B(1 / 2)=B(-1 / 2)=0$, and no other points of \mathbb{D} are mapped to 0 . There are three branches of $B^{-1} \circ B$ defined near 0 ; one satisfies $g_{1}(0)=0$, one satisfies $g_{2}(0)=1 / 2$, and the other satisfies $g_{3}(0)=-1 / 2$. Describe the three branches of $B^{-1} \circ B$ and a domain $\Omega \subset \mathbb{D}$ so that all three branches are holomorphic and single valued in Ω and the closure of Ω contains \mathbb{D}.

* 47.

Compute $\int_{\gamma} f(z) d z$ for $f(z)=z^{2}$ and γ the curve defined by

$$
\gamma(t)= \begin{cases}1+(t-1) i & 0 \leq t<2 \\ (3-t)+i & 2 \leq t<4 \\ -1+(5-t) i & 4 \leq t<6 \\ (t-7)-i & 6 \leq t \leq 8\end{cases}
$$

48. (a) Compute $\int_{\zeta} g(z) d z$ for $g(z)=1 / z$ and ζ the unit circle parametrized by $\zeta(\theta)=e^{i \theta}$, for $0 \leq \theta \leq 2 \pi$.
(b) Compute $\int_{\zeta} h(z) d z$ for $h(z)=1 / z^{2}$ and ζ the unit circle parametrized as above.

* 49.

Let f be holomorphic in the domain Ω. Suppose γ and ζ are smooth curves (i.e. γ, ζ, γ^{\prime}, and ζ^{\prime} are continuous) in Ω such that $\gamma(t)$ is defined for $a \leq t \leq b$ and $\zeta(s)$ is defined for $c \leq s \leq d$ for real numbers a, b, c, and d with $\gamma(a)=\zeta(c)$ and $\gamma(b)=\zeta(d)$ and $\gamma^{\prime}(t)$ and $\zeta^{\prime}(s)$ are never 0 . In addition, suppose that the numbers $\gamma(t)$ are distinct for $a \leq t<b$, the numbers $\zeta(s)$ are distinct for $c \leq s<d$ and the sets $\{\gamma(t): a \leq t \leq b\}$ and $\{\zeta(t): c \leq t \leq d\}$ are the same. Decide whether we always have

$$
\int_{\gamma} f(z) d z=\int_{\zeta} f(z) d z
$$

and justify your answer.

March 6

* 50.

Use the theorem "If f is analytic in $G=\{z:|z-a|<R\}$, for a in \mathbb{C} and $0<R$, and γ is a piecewise C^{1} closed curve in G, then $\int_{\gamma} f(z) d z=0$." to prove the analogous result for H an open half plane in \mathbb{C} (such as $H=\{z: \operatorname{Re}(z)>-3\}$).

* 51.

Evaluate the integrals $\int_{0}^{\infty} \cos \left(t^{2}\right) d t$ and $\int_{0}^{\infty} \sin \left(t^{2}\right) d t$ by integrating $e^{-z^{2}}$ along a curve that follows the boundary of the region $\{z:|z| \leq R$ and $0 \leq \arg (z) \leq \pi / 4\}$ in a counterclockwise direction and then taking the limit as R goes to ∞. (These are called the Fresnel integrals after the French engineer who invented what are now called Fresnel lenses and needed such integrals in his study of optics.)

* 52.

Evaluate the following integrals
(a) $\int_{\gamma} \frac{e^{i z}}{z^{2}} d z \quad$ for $\gamma(t)=e^{i t}, \quad 0 \leq t \leq 2 \pi$
(b) $\int_{\gamma} \frac{p(z)}{z-a} d z \quad$ for $\gamma(t)=a+r e^{i t}, \quad 0 \leq t \leq 2 \pi, \quad$ and p a polynomial

* 53.

Evaluate the integral

$$
\int_{\gamma} \frac{1}{z^{2}+1} d z \quad \text { for } \gamma(t)=2 e^{i t}, \quad 0 \leq t \leq 2 \pi
$$

(Hint: Rewrite the integrand using partial fractions.)
** 54.
Evaluate the integrals

$$
\int_{\gamma_{r}} \frac{z^{2}+1}{z\left(z^{2}+4\right)} d z \quad \text { for } \gamma_{r}(t)=r e^{i t}, \quad 0 \leq t \leq 2 \pi
$$

for each r, with $0<r<\infty$, but $r \neq 2$.

March 13

* 55.

Let G be a domain in \mathbb{C} and suppose f is a holomorphic function in G.
(a) Prove that if $f(z)$ is a real number for every z in G, then f is constant. (Hint: use the idea inherent in Problem 1. of the Test.)
(b) Prove that if L is any line in \mathbb{C} and $f(z)$ is a point of L for every z in G then f is constant.
(c) Prove that if Γ is any circle in \mathbb{C}, that is, there are a in \mathbb{C} and $R>0$ so that $\Gamma=\{w:|w-a|=R\}$, and $f(z)$ is a point of Γ for every z in G then f is constant.

* 56.

Use the result of problem 50. and partial fractions to compute

$$
\int_{-\infty}^{\infty} \frac{e^{i s t}}{t^{2}+2 t+5} d t
$$

for $s>0$ and use your computation to evaluate the integrals

$$
\int_{-\infty}^{\infty} \frac{\cos (s t)}{t^{2}+2 t+5} d t \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{\sin (s t)}{t^{2}+2 t+5} d t
$$

(Hint: Integrate over a path following (counterclockwise) the boundary of the region $\{z: 0 \leq|z| \leq R$ and $0 \leq \arg (z) \leq \pi\}$ and then take the limit as R tends to ∞.)

* 57.

Prove: If G is a domain in \mathbb{C} and f is holomorphic and non-constant on G, then for each a in \mathbb{C}, the set $V_{a}=\{z \in G: f(z)=a\}$ is either \emptyset, a finite set, or a countably infinite set.

* 58.

Prove: There is no function h that is holomorphic in the unit disk \mathbb{D} and satisfies $f(1 / n)=$ $(-1)^{n} / n^{2}$ for $n=2,3, \cdots$.
59. The function φ is defined on the sequence $\left\{\frac{1}{n}\right\}$, for n a positive integer, by $\varphi\left(\frac{1}{n}\right)=\frac{2+n}{3+n^{2}}$

Is it possible to find an analytic function, ψ, defined on a neighborhood of 0 such that $\psi\left(\frac{1}{n}\right)=\varphi\left(\frac{1}{n}\right)$ for all positive integers satisfying $n \geq N$ for some $N>0$? If so, find the largest $R>0$ such that ψ can be analytic on the disk $\{z:|z|<R\}$. If there are some functions satisfying this condition, how many are there? Explain your answers!
** 60.
Prove: If g is an entire function such that for some positive integer n and there are positive numbers M and R so that $|f(z)| \leq M|z|^{n}$ for $|z|>R$, then f is a polynomial of degree less than or equal to n.

April 1

* 61.

Use Schwarz's Lemma and linear fractional 'changes of variables' to prove:
If f is a non-constant analytic function that maps the unit disk \mathbb{D} into itself, then for each z and w in \mathbb{D} with $z \neq w$, we have

$$
\left|\frac{f(z)-f(w)}{1-\overline{f(w)} f(z)}\right| \leq\left|\frac{z-w}{1-\bar{w} z}\right|
$$

Moreover, there is equality for some z_{0} and w_{0} in \mathbb{D} if and only if f is a linear fractional map of the unit disk \mathbb{D} onto itself.

* 62.

Let p be a polynomial of degree n and suppose $R>0$ is large enough that $p(z) \neq 0$ for $|z| \geq R$. Prove that, if $\gamma(t)=R e^{i t}$ for $0 \leq t \leq 2 \pi$

$$
\int_{\gamma} \frac{p^{\prime}(z)}{p(z)} d z=2 \pi n i
$$

* 63.

Evaluate the integral $\int_{0}^{\infty} \frac{1}{x^{5}+1} d x$ by integrating an analytic function along a curve that follows the boundary of the region $\{z:|z| \leq R$ and $0 \leq \arg (z) \leq 2 \pi / 5\}$.

* 64.

The goal is to evaluate the integral $\int_{0}^{\infty} \frac{\sqrt{x}}{x^{5}+1} d x$ by imitating the strategy of Problem 63.
(a) Explain what theorem you used in \#63 and how your use satisfies the hypotheses.
(b) Explain why you cannot use exactly the same contour in this problem.
(c) Use the contour associated with the region $\{z: \epsilon \leq|z| \leq R$ and $0 \leq \arg (z) \leq 2 \pi / 5\}$, or a similar idea, to solve this problem.
** 65.
The smooth curves $\gamma_{0}, \gamma_{1}, \gamma_{2}$, and γ_{3} all have $\gamma_{j}(0)=-i$ and $\gamma_{j}(1)=i$, with γ_{0} following the imaginary axis, γ_{1} following the shorter arc (between $-i$ and i) of the circle with center 1 and radius $\sqrt{2}, \gamma_{2}$ following the longer arc (between $-i$ and i) of the circle with center 1 and radius $\sqrt{2}$, and γ_{3} following the longer arc ($-i$ to i) of the circle with center 2 and radius $\sqrt{5}$.

The function f is analytic in the disk centered at 0 with radius 10 and we know that the function f satisfies

$$
\int_{\gamma_{0}} \frac{f(z)}{(z-2)(z-4)^{2}} d z=7
$$

Compute the integrals $\int_{\gamma_{2}} \frac{f(z)}{(z-2)(z-4)^{2}} d z, \int_{\gamma_{2}} \frac{f(z)}{(z-2)(z-4)^{2}} d z$, and $\int_{\gamma_{3}} \frac{f(z)}{(z-2)(z-4)^{2}} d z$ in terms of the given information and values of f, f^{\prime}, etc.

Along with giving the values of the integrals, give a careful explanation of the theorems you are using and especially the domains, the functions, and the curves involved in justifying your conclusions.

April 8

* 66.

Let $f(z)=\frac{z^{4}-7 z^{2}-5 z-8}{z^{2}-z-6}$
Find Laurent series for f that converge for $0<|z|<2$, for $2<|z|<3$, and for $3<|z|<\infty$.

* 67.

Prove: Suppose f is holomorphic in a punctured disk with center z_{0} and f has a pole of order m at z_{0}. Let $g(z)=\left(z-z_{0}\right)^{m} f(z)$ so that g has a removable singularity at z_{0}. Then $\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{(m-1)!} g^{(m-1)}\left(z_{0}\right)$.

* 68.

The function $g(z)=\frac{\cos (1 / z)}{\sin (2 / z)}$ has infinitely many singularities in \mathbb{C}.
Classify each of them as isolated/not-isolated and removable/pole of order -/essential. For each isolated singularity, find the residue of g at the singularity.

* 69.

Evaluate:

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x
$$

(Hint: Let γ be the boundary of $\{z:|z| \leq R$ and $0 \leq \arg z \leq \pi$.)
70. Evaluate:

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{x^{4}+x^{2}+1} d x
$$

* 71.

Evaluate:

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x
$$

(Hint: Integrate $\frac{e^{i z}}{z}$ over γ, the boundary of $\{z: 0<r \leq|z| \leq R$ and $0 \leq \arg z \leq \pi$.)

* 72.

For $0<a<1$, evaluate:

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x
$$

April 24

* 73.

Change variables in Laplace's Equation from Cartesian coordinates to Polar coordinates: specifically, show that u defined in an open set in \mathbb{R}^{2} is harmonic if and only if

$$
r^{2} \frac{\partial^{2} u}{\partial r^{2}}+r \frac{\partial u}{\partial r}+\frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

* 74.

Suppose u is a real valued harmonic function in the open unit disk \mathbb{D}. Prove that u^{2} is harmonic if and only if u is constant.
75. Suppose u is a complex valued harmonic function in the open unit disk \mathbb{D}.

When is u^{2} also harmonic?

* 76.

(a) Prove: If u is the real part of the analytic function f, then $\operatorname{Re}\left(f^{\prime}\right)=\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$.
(b) Show that $U(x, y)=\log \left(x^{2}+y^{2}\right)$ is a harmonic function.
(c) Use the observation in (a) above to find the harmonic conjugate of U. What is the function $f=U+i V$?

* 77.

Use Rouche's Theorem to prove that, for $n \geq 1$ and $a_{0}, a_{1}, \cdots, a_{n-1}$ arbitrary complex numbers, if

$$
P(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{2} z^{2}+a_{1} z+a_{0}
$$

then $|P(z)|<1$ for all z with $|z|=1$ is impossible. (Hint: Write $P=f+g$.)
78. (a) Let H_{0} be the half plane $H_{0}=\{z: \operatorname{Re}(z)>0\}$. For $f(z)=\sqrt{i z}$, where the branch of the square root has an appropriate domain and $\sqrt{1}=1$, find $f\left(H_{0}\right)$.
(b) For $H_{1}=\{z: \operatorname{Re}(z)>1\}$, find $f\left(H_{1}\right)$.
(c) What curve forms the boundary of $f\left(H_{1}\right)$? Give a precise description!

* 79.

Let H_{0} be the half plane $H_{0}=\{z: \operatorname{Re}(z)>0\}$, let $g(z)=\sqrt{z}$, where the branch of the square root has an appropriate domain and $\sqrt{1}=1$, and let $h(z)=z^{2}$.
(a) Find a linear fractional map φ so that $\varphi(0)=-1, \varphi(1)=0$, and $\varphi(\infty)=1$.
(b) Describe the set $\varphi\left(g(h(z)+1)\right.$) for z in H_{0}.

* 80.

Let $\Omega=\{z:-\pi / 2<\operatorname{Re}(z)<\pi / 2$ and $\operatorname{Im}(z)>0\}$.
(a) Find $\sin (\Omega)$.
(b) Find $\cos (\Omega)$.
(c) Find $\tan (\Omega)$.

For Discussion May 1

* 81.

Use the definition of infinite product to show that

$$
\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}
$$

* 82.

Let \mathbb{D} be the open unit disk, let $H_{+}=\{z: \operatorname{Im}(z)>0\}$, let $H_{-}=\{z: \operatorname{Im}(z)<0\}$, and let $\Delta=\mathbb{D} \cap H_{+}$
(a) Find $f(\Delta)$ for $f(z)=z+z^{-1}$
(b) Find a function g defined, analytic, and univalent on \mathbb{D} such that $g(\mathbb{D})=\Delta$

* 83.

Let \mathbb{D} be the open unit disk and let \mathcal{S} be the interior of the square with vertices at $\pm 1 \pm i$, that is, $\mathcal{S}=\{w:-1<\operatorname{Re}(w)<1$ and $-1<\operatorname{Im}(w)<1\}$.

Let $\sigma(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be the (unique) analytic function on \mathbb{D} such that σ is one-to-one on $\mathbb{D}, \sigma(\mathbb{D})=\mathcal{S}, \quad \sigma(0)=0$, and $\sigma^{\prime}(0)>0$. Prove a_{n} is real for all n and that $a_{n}=0$ unless $n=4 k+1$ for some integer k.

* 84.

Suppose G is a bounded, connected, simply connected open subset of the plane such that there is a function ρ analytic and one-to-one on the disk $\{z:|z|<R\}$, with $R>1$, for which $\rho(\mathbb{D})=G$ and $\rho(\partial \mathbb{D})$ is a simple closed curve that forms the boundary of G.

Let a, b, c, and d be four distinct points on the boundary of G.
(a) Show that it is possible to find a function f holomorphic and univalent on \mathbb{D} and continuous on $\mathbb{D} \cup \partial \mathbb{D}$ such that $f(\mathbb{D})=G$ and $f(1)=a$ and $f(-1)=c$.
(b) When is it possible to find g holomorphic and univalent on \mathbb{D} and continuous on $\mathbb{D} \cup \partial \mathbb{D}$ such that $g(\mathbb{D})=G$ and $g(1)=a, g(i)=b$, and $g(-1)=c ?$
(c) If it is possible to find g holomorphic and univalent on \mathbb{D} and continuous on $\mathbb{D} \cup \partial \mathbb{D}$ such that $g(\mathbb{D})=G$ and $g(1)=a, g(i)=b$, and $g(-1)=c$, when is also possible to find h, holomorphic and univalent on \mathbb{D} and continuous on $\mathbb{D} \cup \partial \mathbb{D}$ such that $h(\mathbb{D})=G$, and $h(1)=a, h(i)=b, h(-1)=c$, and $h(-i)=d ?$

* 85.

Use a contour integral to evaluate $\int_{0}^{\infty} \frac{\log x}{x^{2}+9} d x$. Give careful definitions of your contours.
If you use a complex logarithm function, define the branch you are using.

* 86.

Suppose q is analytic on the disk $\{z:|z|<R\}$ where $R>1$.
(a) What is the order of the zero of $q-q(0)-q^{\prime}(0) z$ at the origin?
(b) Prove: If $|q(0)|+\left|q^{\prime}(0)\right|<\min \{|q(z)|:|z|=1\}$, then q has at least two zeros (counting multiplicity) in \mathbb{D}.

