OUTLINE to February 13

- The complex numbers: field properties, conjugate, absolute value (modulus), real and imaginary parts
- Geometry of complex numbers: metric for \mathbb{C}, argument, DeMoivre's Formula
- Riemann sphere/extended complex plane: stereographic projection of sphere onto \mathbb{C}
- lines in the plane as circles through ∞ on the sphere
- Definition of "function $f: G \mapsto \mathbb{C}$ is differentiable" for G an open set in \mathbb{C}.
- Calculus:
- f differentiable implies f continuous
- sum, product, quotient rules for derivatives
- chain rule for derivatives
- Cauchy-Riemann equations
- Harmonic functions
- Examples of holomorphic/analytic functions:
- polynomials in the complex variable z
- rational functions in the complex variable z
- linear fractional maps
- Power series
- basic properties: open regions of absolute convergence/divergence, radius of convergence
- differentiability of a power series in the open disk of absolute convergence
- series for derivatives (of all orders) of a power series and their radii of convergence
- exponential function $\exp (z)$
- trigonometric functions $\cos (z), \sin (z)$, etc.
- properties of exponential and trigonometric functions
- Branches of inverses of holomorphic functions
- \log as inverse of exponential function
$-\sqrt{z}, \sqrt[3]{z}$, etc. as inverses of polynomials
- definition of a^{c} for complex numbers a and c with $a \neq 0$
- Holomorphic functions as mappings
- Linear fractional maps as univalent mappings of the Riemann sphere onto itself
* take circles(lines) to circles(lines)
* transitivity property: any three points in plane can be taken to any other three points by a linear fractional map
- Polynomials and rational functions of degree n as n - to - 1 coverings of $\widehat{\mathbb{C}}$ onto $\widehat{\mathbb{C}}$
- Exponential function as an ∞ - to - 1 covering of \mathbb{C} onto $\mathbb{C} \backslash\{0\}$
- Principle of conformal mapping:
- If f is holomorphic in a domain G, the point z_{0} is in G, the derivative $f^{\prime}\left(z_{0}\right) \neq 0$, and γ_{1} and γ_{2} are curves in G that both pass through z_{0}, then the angle between γ_{1} and γ_{2} at z_{0} is the same as the angle between the curves $f\left(\gamma_{1}\right)$ and $f\left(\gamma_{2}\right)$ at $f\left(z_{0}\right)$. Specifically, the argument of the line tangent to the curve $f\left(\gamma_{j}\right)$ at $f\left(z_{0}\right)$ is the sum of the argument of the line tangent to the curve γ_{j} at z_{0} and the argument of $f^{\prime}\left(z_{0}\right)$ for each of $j=1$ and $j=2$.

