Professor Carl Cowen

Math 53000

OUTLINE to February 13

- The complex numbers: field properties, conjugate, absolute value (modulus), real and imaginary parts
- Geometry of complex numbers: metric for \mathbb{C} , argument, DeMoivre's Formula
- Riemann sphere/extended complex plane: stereographic projection of sphere onto $\mathbb C$
 - lines in the plane as circles through ∞ on the sphere
- Definition of "function $f: G \mapsto \mathbb{C}$ is differentiable" for G an open set in \mathbb{C} .
- Calculus:
 - -f differentiable implies f continuous
 - sum, product, quotient rules for derivatives
 - chain rule for derivatives
 - Cauchy-Riemann equations
- Harmonic functions
- Examples of holomorphic/analytic functions:
 - polynomials in the complex variable z
 - $-\,$ rational functions in the complex variable z
 - linear fractional maps
- Power series
 - basic properties: open regions of absolute convergence/divergence, radius of convergence
 - differentiability of a power series in the open disk of absolute convergence
 - series for derivatives (of all orders) of a power series and their radii of convergence
 - exponential function $\exp(z)$
 - trigonometric functions $\cos(z)$, $\sin(z)$, etc.
 - properties of exponential and trigonometric functions
- Branches of inverses of holomorphic functions
 - log as inverse of exponential function
 - $-\sqrt{z}, \sqrt[3]{z}$, etc. as inverses of polynomials
 - definition of a^c for complex numbers a and c with $a \neq 0$

- Holomorphic functions as mappings
 - Linear fractional maps as univalent mappings of the Riemann sphere onto itself
 - * take circles(lines) to circles(lines)
 - * transitivity property: any three points in plane can be taken to any other three points by a linear fractional map
 - Polynomials and rational functions of degree n as n to 1 coverings of $\widehat{\mathbb{C}}$ onto $\widehat{\mathbb{C}}$
 - Exponential function as an ∞ to 1 covering of \mathbb{C} onto $\mathbb{C} \setminus \{0\}$
- Principle of conformal mapping:
 - If f is holomorphic in a domain G, the point z_0 is in G, the derivative $f'(z_0) \neq 0$, and γ_1 and γ_2 are curves in G that both pass through z_0 , then the angle between γ_1 and γ_2 at z_0 is the same as the angle between the curves $f(\gamma_1)$ and $f(\gamma_2)$ at $f(z_0)$. Specifically, the argument of the line tangent to the curve $f(\gamma_j)$ at $f(z_0)$ is the sum of the argument of the line tangent to the curve γ_j at z_0 and the argument of $f'(z_0)$ for each of j = 1 and j = 2.